4-Nitrofenol ile Boyar Madde Çözelti Karışımlarını Aynı Anda İndirgeme ve Bozundurma Reaksiyonları için Poli(4-Vinil Piridin)-Co İyonik Sıvı Kriyojel Kompozit Katalizörü

Bu çalışmada, poli(4-vinil piridin) (p(4-VP)) süper gözenekli kriyojelleri serbest radikal polimerizasyon tekniği ile kriyojenik koşullarda sentezlenmiştir ve hidroklorik asit ile muamele edilerek protonlanmıştır (p(4-VP)+Cl- ). Hazırlanan kriyojeller, Fourier Dönüşümlü Kızılötesi Işımalı spektroskopisi (FT-IR), Termogravimetrik Analiz cihazı (TGA), Taramalı Elektron Mikroskobu (SEM) ve optik mikroskop ile karakterize edilmişlerdir. P(4-VP)+Clkriyojellerine CoCl2'nin etanol çözeltisinden metal tuzu yüklenerek NaBH4 varlığında indirgenerek iyonik sıvı (IL) kriyojeller içinde Co metal nanopartikül sentezi yapılmıştır. Kriyojeller içindeki metal miktarları atomik absorpsiyon spektroskopisi (AAS) ile belirlenmiştir ve p(4-VP)+Cl- -Co kriyojel kompozitinin 121,6±7,3 mg/g Co nanopartikülü içerdiği belirlenmiştir. Hazırlanan p(4-VP)+Cl- -Co kompozit kriyojelleri 4-nitro fenol (4-NP), eosin Y (EY), ve metilen mavisi (MM) çözeltilerinin karışımlarını aynı anda indirgeme ve bozunma reaksiyonlarında katalizör olarak kullanılmıştır. Buna göre, 4-NP/EY, 4-NP/MB ve 4-NP/EY/MB karışımlarındaki herbir molekül için p(4-VP)+Cl- -Co kriyojel kompozit katalizör varlığında %85’in üzerinde dönüşüm elde edilmiştir. Ayrıca, 4-NP, EY ve MM bileşiklerinin çözeltilerinin karışımlarında p(4-VP)+Cl- -Co kriyojel kompozit katalizörü kullanılarak indirgenme ve/ya bozunma reaksiyonları gerçekleştirilerek dönüşüm% ve bir mol katalizörün dakikada katalizlediği molekülün mol sayısı (TOF) değerleri hesaplanmıştır.

Poly (4-Vinyl Pyridine)-Co Ionic Liquid Cryogel Composite Catalyst for Simultaneous Reduction and Degradation Reactions of 4-Nitrophenol and Dye Mixtures

In this study, superporous poly(4-vinyl pyridine) (p(4-VP)) cryogels were synthesized via free radical polymerization technique at cryogenic conditions and were protonated (p)4-VP)+ ) by the treated of hydrochloric acid solution. The prepared cryogels were characterized by using Fourier Transform Infrared Radiation (FT-IR) spectrometer, Thermogravimetric Analysis (TGA), Scanning Electron Microscope (SEM), and optic microscope. Metal salt of CoCl2 from ethanol solution was loaded into p(4-VP)+Clcryogels and reduced in the presence of NaBH4 to obtain Co metal nanoparticles within ionic liquid (IL) cryogels and the amount of Co nanoparticle within cryogels was determined by using Atomic Absorption Spectrometer (AAS) and found as 121.6±7.3 mg/g within p(4-VP)+Cl- -Co cryogel composites. Furthermore, the prepared p(4-VP)+Cl- -Co cryogel composites were used as a catalyst in reduction and degradation reaction of the mixtures of 4-nitro phenol (4-NP), eosin Y (EY), and methylene blue (MB) solutions simultaneously. Accordingly, for the each components of 4-NP/EY, 4- NP/MB and 4-NP/EY/MB mixtures over 85% conversion obtained in the presence of p(4- VP)+Cl- -Co cryogel composite catalyst. It was also calculated the % conversion and the numbers of moles of molecules catalyzed by one mole of catalyst (TOF) for the catalytic reduction and/or degradation of each one of the components 4-NP, EY and MM catalyzed by of p(4-VP)+Cl- -Co cryogel composite catalyst.

___

  • Ak F., Oztoprak Z., Karakutuk I, Okay O., 2013. Macroporous Silk Fibroin Cryogels. Biomacromolecules, 14: 719-727.
  • Avery T.D., Jenkins N.F., Kimber M.C., Lupton D.W., Taylor D.K., 2002. First examples of the catalytic asymmetric ring-opening of meso 1,2-dioxines utilising cobalt(II) complexes with optically active tetradentate Schiff base ligands: formation of enantioenriched cyclopropanes. Chemical Communications 28-29.
  • Bakhshpour M., Derazshamshir A., Bereli N., Elkak A., Denizli A., 2016. [PPHEMA/PEI]- Cu(II) based immobilized metal affinity chromatography cryogels: Application on the seperation of IgG from human plasma Materials Science and Engineering: C 61: 824- 831.
  • Chang K-H., Liao H-T., Chen J-P., 2013. Preparation and Characterization of Gelatin/hyaluronic Acid Cryogels for Adipose Tissue Engineering: In Vitro and In Vivo Studies. Acta Biomaterialia, 9: 9012-9026.
  • Cocalia V.A., Gutowsky K.E., Rogers R., 2006. The coordination chemistry of actinides in ionic liquids: A review of experiment and simulation. Coordination Chemistry Reviews 250: 755-764.
  • Dainiak M. B., Allan I. U., Savina I. N., Cornelio L., James E. S., James S. L., Mikhalovsky S. V., Jungvid H., Galaev I. Y., 2010. Gelatin–fibrinogen Cryogel Dermal Matrices for Wound Repair: Preparation, Optimisation and In Vitro Study. Biomaterials, 31: 67-76.
  • Demirci S., Sahiner N., 2014. Superior reusability of metal catalysts prepared within poly(ethylene imine) microgels for H2 production from NaBH4 hydrolysis. Fuel Processing Technology 127:88-96.
  • Demirci S., Sahiner N., 2015. The use of metal nanoparticle-embedded poly(ethyleneimine) composite microgel in the reduction of nitrophenols. Water, Air, and Soil Pollution 226:64-76.
  • Dinu M. V., Ozmen M. M., Dragan E. S., Okay O., 2007. Freezing as a Path to Build Macroporous Structures: Superfast Responsive Polyacrylamide Hydrogels. Polymer, 48: 195-204.
  • Dogu S., Okay O., 2008. Tough organogels based on polyisobutylene with aligned porous structures. Polymer, 49: 4626-4634.
  • Dragan E.S., Loghin D.F.A., Cocarta A.I., Doroftei M., 2016. Multı-stimuli-responsive semiIPN cryogels with native and anionic potato starch entrapped in poly (N,Ndimethylaminoethyl methacrylate) matrix and their potentail in drug delivery. Reactive and Functional Polymers 105: 66-77.
  • Gupta S., Webster T.J., Sinha A., 2011. Evolution of PVA gels prepared without crosslinking agents as a cell adhesive surface. Journal of Materials Science 22: 1763-1772.
  • Karacan P., Okay O., 2013. Ethidium Bromide Binding to DNA Cryogels. React. Funct. Polym., 73: 442-450.
  • Lee Y., Lee H.J., Son K.J., Koh W.G., 2011. Fabrication of hydrogel-micropatterned nanofibers for highly sensitive microarray-based immunosensors having additional enzyme-based sensing capability. Journal of Materials Chemistry 21: 4476-4483.
  • Liangb C. H., Hob W. Y., Yeha L. H., Chenga Y. S., Choua T. H., 2013. Effects of 1- hexadecyl-3- methylimidazolium ionic liquids on the physicochemical characteristics and cytotoxicity of phosphatidylcholine vesicles, Colloids and Surfaces A: Physicochemical and Engineering Aspects 436: 1083-1091.
  • Lozinsky V. I., Damshkaln L. G., Kurochkin I. N., Kurochkin I. I., 2014. Cryostructuring of polymeric systems. 36. Poly(vinyl alcohol) cryogels prepared from solutions of the polymer in water/low-molecular alcohol mixtures., Eur. Polym. J., 53: 189-205.
  • Lozinsky V.I., Galaev I.Y., Plieva F.M., Savina I.N., 2003. Polymeric cryogels as promising materials of biotechnological interest. Trends in Biotechnology 21: 445-541.
  • Migowski P., Dupont J., 2007. Catalytic Applications of Metal Nanoparticles in Imidazolium Ionic Liquids. Chemistry a Europan Journal 13: 32-39.
  • Ohno H., 2005. Electrochemical Aspects of Ionic Liquids, Wiley-VCH. Weinheim.
  • Orakdogen N., Karacan P., Okay O., 2011. Macroporous, responsive DNA cryogel beads. Reactive and Functional Polymers 71: 782-790.
  • Petrov P., Mokreva P., Kostov I., Uzunova V., Tzoneva R., 2016. Novel electrically conducting 2-hydroxyethylcelluose/polyaniline nanocomposite cryogels: Synthesis and application in tissue engineering. Carbonhydrate Polymers 140: 349-355.
  • Petrov P., Utrata-Wesolek A., Trzebicka B., Tsvetanova C. B., Dworak A., Aniol J., Sieron A., 2011. Biocompatible Cryogels of Thermosensitive Polyglycidol Derivatives with Ultra-rapid Swelling Properties. Eur. Polym. J., 47: 981-988.
  • Pons A., Casas L.l., Estop E., Molins E., Harris K.D.M., Xu M., 2012. A New Route to Aerogels: Monolithic Silica Cryogels. J. Non-Cryst. Solids, 358: 461-469.
  • Reichelt S., Becher J., Weisser J., Prager A., Decker U., Möller S., Berg A., Schnabelrauch M., 2014 a. Biocompatible Polysaccharide-based Cryogels. Mater. Sci. Eng., C, 35: 164-170.
  • Reichelt S., Prager A., Abe C., Knolle W., 2014 b. Tailoring the Structural Properties of Macroporous Electron-beam Polymerized Cryogels by Pore Forming Agents and The Monomer Selection. Radiat. Phys. Chem., 94: 40-44.
  • Sahiner N., 2013. Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Progress in Polymer Science 38: 1329-1356.
  • Sahiner N., Demirci S., 2016. PEI-based hydrogels with different morphology and sized: Bulkgel, microgel, and cryogel for catalytic energy and environmental catalytic applications. European Polymer Journal 76: 156-169.
  • Sahiner N, 2009. A facile method for the preparation of poly(4-vinylpyridine) nanoparticles and their characterization, Turkish Journal of Chemistry 33: 23-31.
  • Sahiner N., Ozay O., 2011.Highly charged p(4-vinylpyridine-co-vinylimidazole) particles for versatile applications: Biomedical, catalysis and environmental. Reactive and Functional Polymer 71: 344-352.
  • Sahiner N., Ozay O., Aktas N., Blaked D. A., John V. T., 2011. Arsenic (V) removal with modifiable bulk and nano p(4-vinylpyridine)-based hydrogels: The effect of hydrogel sizes and quarternization agents. Desalination, 279: 344–352.
  • Sahiner N., Seven F., 2014. The use of superporous p(AAc (acrylic acid)) cryogels as support for Co and Ni nanoparticle preparation and as reactor in H2 production from sodium borohydride hydrolysis. Energy 71: 170-179.
  • Sahiner N., Seven F., Al-Lohedan H., 2015a. Super-fast hydrogen generation via super porous Q-P(VI)-M cryogel catalyst systems from hydrolysis of NaBH4. International Journal of Hydrogen Energy 40: 4605-4616.
  • Sahiner N., Turhan T., Lyon A.A., 2014. ILC(ionic liquid colloids) based on p(4-VP)(poly(4- vinyl pyridine) microgels: Synthesis, characterization and use in hydrogel production. Energy 66: 256-263.
  • Sahiner N., Yasar A. O., 2013a. Metal nanoparticle preparation within modifiable p(4-VP) microgels and their use in hydrogen production from NaBH4 hydrolysis. International Journal of Hydrogen Energy 38: 6736-6743.
  • Sahiner N., Yasar A.O., 2013b. Synthesis and modification of p(VI) microgels for in situ metal nanoparticle preparation and their use as catalyst for hydrogen generation from NaBH4 hydrolysis. Fuel Processing Technology 111: 14-21.
  • Sahiner N., Yildiz S., 2014. Preparation of superporous poly(4-vinyl pyridine) cryogel and their templated metal nanoparticle composites for H2 production via hydrolysis reaction. Fuel Processing Technology 126: 324-331.
  • Sahiner N., Yildiz S., Al-Lohedan H., 2015b. The resourcefulness of p(4-VP) cryogels as template for in situ metal nanoparticle preparation of various metals and their use in H2 production, nitro compound reduction and dye degradation. Applied catalysis BEnvironmental 166: 145-154.
  • Seven F., Sahiner N., 2014a. Enhanced catalytic performance in hydrogen generation from NaBH4 hydrolysis by super porous cryogel supported Co and Ni catalysts. Journal of Power Sources 272: 128-136.
  • Seven F., Sahiner N., 2014b. Superporous P(2-hydroxyethyl methacrylate) cryogel-M (M:Co, Ni, and Cu) composites as highly effective catalysts in H2 generation from hydrolysis of NaBH4 and NH3BH3. International Journal of Hydrogen Energy 39: 1545-1563.
  • Stoyneva V., Momekova D., Kostova B., Petrov P., 2014. Stimuli Sensitive Supermacroporous Cryogels Based on Photo-crosslinked 2-Hydroxyethylcellulose and Chitosan. Carbohydr. Polym., 99: 825-830.
  • Sun W., Li X., Jiao K., 2009. Direct electrochemistry of myoglobin in a nafion-ionic liquid composite film modified carbon ionic liquid electrode. Electroanalysis 21: 959–964.
  • Topuz F., Okay O., 2009. Macroporous Hydrogel Beads of High Toughness and Superfast Responsivity. React. Funct. Polym., 69: 273-280.
  • Venkatesan R., Prechtl M.H.G., Scholten J.D., Pezzi R.P., Machado G., Dupont J., 2011. Palladium nanoparticle catalysts in ionic liquids: synthesis, characterisation and selective partial hydrogenation of alkynes to Z-alkenes. Journal of Materials Chemistry 21: 3030-3036.
  • Welton T., 1999. Room-temperature ionic liquids Solvents for synthesis and catalysis. Chemical Reviews 35: 2071-2083.
  • Yang Z., Pan W., 2005. Ionic liquids: green solvents for nonaqueous biocatalysis. Enzyme and Microbial Technology 37: 19–28.
  • Yildiz S., Aktas N., Sahiner N., 2014. Metal nanoparticle-embedded super porous poly(3- sulfopropyl methacrylate) cryogel for H2 production from chemical hydride hydrolysis. International Journal of Hydrogen Energy 39: 14690-14700.
  • Zhanga Y., Queka X.Y., Wua L., Guana Y., Hensen E. J., 2013. Palladium nanoparticles entrapped in polymeric ionic liquid microgels as recyclable hydrogenation catalysts. Applied Catalysis A,379: 53-58.
  • Zheng S., Wang T., Liu D., Liu X., Wang C., Tong Z., 2013. Fast Deswelling and Highly Extensible Poly(N-isopropylacrylamide)-hectorite Clay Nanocomposite Cryogels Prepared by Freezing Polymerization. Polymer, 54: 1846-1852.
Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2459-1580
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2015
  • Yayıncı: Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü