Yara Kaplama Malzemesi olarak Kollajen Esaslı Hidrojel Filmleri

Yara kaplama malzemesi olarak kullanılacak kollajen/kitosan (koll/kitosan) ve kollajen/kitosan/poli(N-izopropil akrilamid) (koll/kitosan/p(NIPAm)) iç içe geçmiş ağ yapılı (IPN) hidrojelleri gluteraldehit ve poli(etilenglikol)diakrilat çapraz bağlayıcıları kullanılarak film şeklinde sentezlenmiştir. Hazırlanan hidrojellerin morfolojik karakterizasyonu optik mikroskop ile yapılmış ve hidrojel yüzeylerinde 1-20 µm boyutunda mikro gözenekler içerdiği belirlenmiştir. Hidrojellerin yapısal ve termal karakterizasyonu FT-IR spektroskopisi ve termal gravimetrik analiz (TGA) ölçümleri ile belirlenmiştir. Koll/kitosan ve koll/kitosan/p(NIPAm) IPN hidrojellerinin pH 5,4, 7,4 ve 9,0 da denge şişme kapasiteleri belirlenmiş ve koll/kitosan/p(NIPAm) hidrojeli en yüksek pH 5,4 değerinde % 428±97 oranında şiştiği belirlenmiştir. Ayrıca hidrojellerin 25-50 ºC aralığındaki denge şişme değerleri ölçülmüş ve koll/kitosan hidrojellerinin yaklaşık % 200 şişme değeri ile neredeyse bütün sıcaklıklarda aynı şişme derecesine sahip olduğu gözlemlenirken koll/kitosan/p(NIPAm) hidrojelinin 25 ºC sıcaklıkta % 312±14 oranında şişerken, yapısındaki sıcaklık duyarlı p(NIPAM) den dolayı 50 ºC ısıtıldığında % 59±2 şişme değeri ile küçüldüğü gözlemlenmiştir. Ayrıca, hazırlanan koll/kitosan esaslı IPN hidrojelleri deksametazon sodyum fosfat ilacının salımında kullanılmış ve koll/kitosan hidrojellerinin 114,6±2,9 mg/g ilacı 15 saatte salarken koll/kitosan/p(NIPAm) aynı sürede yaklaşık 51,3±1,2 mg/g saldığı gözlemlenmiştir.

Collagen based Hydrogel Films as Wound Dressing Materials

Collagen/chitosan (coll/chitosan) and collagen/chitosan/poly(N-isopropylacrylamide) (coll/chitosan/p(NIPAm)) interpenetrating network (IPN) hydrogels were synthesized in film form using glutaraldehyde and poly(ethylene glycol)diacrylate as crosslinkers for the purpose of wound dressing materials. Morphological characterization of the prepared hydrogels were done by optic microscope images and it was found that the surface of the hydrogels possess microporous structure with the pore size of 1-20 µm. The structural and thermal characterizations of the hydrogels were evaluated by using FT-IR spectroscopy and thermal gravimetric analysis (TGA). The equilibrium swelling capacity of collagen/chitosan and collagen/chitosan/p(NIPAm) IPN hydrogels were measured at pH 5.4, 7.4 and 9,0 values and collagen/chitosan/p(NIPAm) hydrogels was found to have the highest equilibrium swelling capacity was found at pH 5.4 with 428±97 % swelling ratio. In addition, the equilibrium swelling properties of the hydrogels between 25 and 50 ºC were measured and observed that collagen/chitosan hydrogels have the almost same swelling capacity for all temperatures with nearly 200 % swelling ratio whereas collagen/chitosan/p(NIPAm) hydrogels have the swelling ratio of 312±14 % at 25 ºC and shrunk to % 59±2 % at 50 ºC due to the thermo responsive p(NIPAm) in the structure. Moreover, the prepared collagen/chitosan based IPN hydrogels were used in release of drug and it was observed that collagen/chitosan hydrogels were released 114.06±2.9 mg/g dexamethasone drug within 15 hours whereas coll/chitosan/p(NIPAm) were released about 51.3±1.2 mg/g at the same time.

___

  • Alburquenque C., Bucarey S.A., Neira-Carrillo A., Urzúa B., Hermosilla G., Tapia C.V., 2010. Antifungal activity of low molecular weight chitosan against clinical isolates of Candida spp. Medical Mycology 48: 1018–1023.
  • Altıok D., Altıok E., Tihminlioglu F., 2010. Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications. Journal of Material Science Material in Medicine 21: 2227-2236.
  • Costa E.M., Silva S., Pina C., Tavaria F.K., Pintado M.M., 2012. Evaluation and insights into chitosan antimicrobial activity against anaerobic oral pathogens. Anaerobe 18: 305–309.
  • Grenha A., 2012.Chitosan nanoparticles: a survey of preparation methods. Journal of Targeting 20: 291–300.
  • Elgadir M.A., Uddin M.S., Ferdosh S., Adam A., Chowdhury A.J.K., Sarker M.Z.I., 2015. Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review. Journal of Food and Drug Analysis 23: 619–629.
  • Harkins A.L., Duri S., Kloth L.C., Tran C. D., 2014. Chitosan- cellulose composite for wound dressing material. Part 2. Antimicrobial activity, blood absorption ability, and biocompatibility. Journal of Biomedical Materials Research Part B Applied Biomaterials 102(6): 1199-1206.
  • Kamat V., Marathe I., Ghormade V., Bodas D., Paknikar K., 2015. Synthesis of monodisperse chitosan nanoparticles and in situ drug loading using active microreactor. ACS Applied Materials and Interfaces 7: 22839–22847.
  • Mohamad N., Amin M.C.I.M., Pandey M., Ahmad N., Rajab N.F. 2014. Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: Accelerated burn wound healing in an animal model. Carbohydrate Polymers 114: 312–320.
  • Moura L.I.F., Dias A.M.A., Carvalho E., de Sousa H. C., 2013. Review Recent advances on the Development of Wound Dressings for Diabetic Foot Ulcer Treatment—A review. Acta Biomaterialia 9: 7093–7114.
  • Nyo D.H., Kim S.K., 2014. Antioxidant effects of chitin, chitosan, and their derivatives. Advances in Food and Nutrition Research 73:15-31.
  • Ono S., Imai R., Ida Y., Shibata D., Komiya T., Matsumura H., 2015 Increased Wound pH as an Indicator of Local Wound Infection in Second Degree Burns. Burns 41: 820-824.
  • Panzarasa G., Osypovaa A., Toncelli C,. Buhmann M.T., Rottmar M., Ren Q., ManiuraWeber K., Rossi R.M., Boesel L.F., 2017. The Pyranine-Benzalkonium Ion Pair: A Promising Fluorescent System for the Ratiometric Detection of Wound pH. Sensors and Actuators B 249 : 156–160.
  • Prabaharan M., 2015. Chitosan-based nanoparticles for tumor-targeted drug delivery. International Journal of Biological Macromolecules 72: 1313–1322. Reich G., 2007. From Collagen To Leather-The Theoretical Background, Basf, (Ludwigshafen) 329.
  • Sahiner M., Alparslan D., Bitlisli B.O., 2014. Collagen-Based Hydrogel Films As DrugDelivery Devices With Antimicrobial Properties. Polymer Bulletin 71: 3017–3033.
  • Sahiner M., 2015. Kollajen Esaslı Polimerik Kompozit Malzeme Sentezi, Karakterizasyonu ve Biyomalzeme olarak Değerlendirilebilirliği. FBE, Ege Üniversitesi, Bornova, Türkiye (Doktora Tezi).
  • Sahiner N., Sagbasa S., Sahiner M., Silan C, Aktas N., Turk M., 2017. Agar/Chitosan IPN Thin Hydrogel Films with Antimicrobial and Antioxidant Properties for Potential Dressing Applications Current. Applied Polymer Science 1: 52-62.
  • Schneider L.A., Korber A., Grabbe S., Dissemond J. 2007. Influence of pH on woundhealing: a new perspective for wound-therapy. Archives of Dermatological Research 298: 413-420.
  • Seon G. M., Lee M. H., Kwon B.-J., Kim M.S., Koo M.-A., Seomun Y., Kim J.-T., Kim T. H., Park J.-C., 2018. Recombinant Batroxobin-Coated Nonwoven Chitosan as Hemostatic Dressing for initial Hemorrhage Control. International Journal of Biological Macromolecules 113: 757–763.
  • Shao L., Cao Y., Li Z., Hu W., Li S., Lu L., 2018. Dual Responsive Aerogel Made From Thermo/Ph Sensitive Graft Copolymer Alginate-G-P(NIPAM-co-NHMAM) For Drug Controlled Release. International Journal of Biological Macromolecules 114: 1338– 1344.
  • Sun L., Li B., Song W., Si L., Hou H., 2017. Characterization of Pacific cod (Gadus macrocephalus) Skin Collagen and Fabrication of Collagen Sponge as a Good Biocompatible Biomedical Material. Process Biochemistry 63: 229–235.
  • Suner S. S., Sahiner M., Sengel S.B., Ress D.J., Redd W. F., Sahiner N., 2018. Chapter 17: Responsive Biopolymer-Based Microgels/Nanogels for Drug Delivery Applications. In: Makhlouf A.S.H., Abu-Thabit N.Y. Ed. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications. Woodhead Elsevier 453-500.
  • Ward M.A., Georgiou T.K., 2011. Georgiou, Thermoresponsive Polymers for Biomedical Applications, Polymers 3: 1215.
  • Zhang Q., Wang Q., Lv S., Lu J., Jiang S., Regenstein J.M., Lin L., 2016. Comparison of Collagen and Gelatin Extracted from the Skins of Nile tilapia (Oreochromis niloticus) and Channel Catfish (Ictalurus punctatus). Food Bioscience. 13: 41–48.
  • Zhang J., Tan W., Wang G., Yin X., Li Q., Dong F. Guo Z., 2018. Synthesis, characterization, and the antioxidant activity of N,N,N-trimethyl chitosan salts. International Journal of Biological Macromolecules 118: 9–14.
  • Zubareva A., Shagdarova B., Varlamova V., Kashirina E., Svirshchevskaya E., 2017. Penetration and toxicity of chitosan and its derivatives. European Polymer Journal 93: 743–749.