Soğuk Plazma Uygulamasının Gıda Bileşenleri Üzerine Etkileri

Isıl işlemlerin gıdaların duyusal özelliklerinde sebep olabildiği değişim, protein denatürasyonu, vitamin kaybı gibi olumsuz etkiler ve tüketici beklentileri çalışmaları ultrases, ışınlama, yüksek hidrostatik basınç, vurgulu elektrik alan, ohmik ısıtma, mikrofiltrasyon, gibi ısıl olmayan teknolojilere yönlendirmektedir. Söz konusu teknolojiler içerisinde bulunan soğuk plazma uygulamaları düşük maliyet, kısa işlem süresi ve gıda güvenliği açısından son yıllarda önem kazanmaktadır. Ancak arzu edilen ürün kalitesine ulaşabilmek için soğuk plazma uygulamasının, gıda bileşenleri ile etkileşimleri ve bu etkileşimlerin sonuçlarının bilinmesi gerekmektedir. Bu çalışmada gıdalardaki soğuk plazma uygulamalarının, protein, lipid, karbonhidrat ve biyoaktif bileşenler gibi gıda bileşenleri üzerine etkileri derlenmiştir.

Effects of Cold Plasma Application on Food Components

Negative effects such as changes in sensory properties, protein denaturation, loss of vitamins and consumer expectations that heat treatments can cause in foods lead studies to non-thermal technologies such as ultrasound, irradiation, high hydrostatic pressure, pulsed electric field, ohmic heating, microfiltration. In recent years, cold plasma applications, among these technologies, have gained importance in terms of cost, short processing time and food safety. However, in order to achieve the desired product quality, it is necessary to know the cold plasma application interactions with food components. Therefore, this review were explore the effects of cold plasma applications in food components such as protein, lipid, carbohydrate and bioactive components.

___

  • Almeida, F. D. L., Cavalcante, R. S., Cullen, P. J., Frias, J. M., Bourke, P., Fernandes, F. A. N. and Rodrigues, S. 2015. Effects of atmospheric cold plasma and ozone on prebiotic orange juice. Innovative Food Science and Emerging Technologies, 32: 127–135.
  • Alves Filho, E. G., Silva, L. M. A., Oiram Filho, F., Rodrigues, S., Fernandes, F. A. N., Gallão, M. I., Mattison, C.P. and de Brito, E. S. 2019. Cold plasma processing effect on cashew nuts composition and allergenicity. Food Research International, 125: 108621.
  • Amini, M. and Ghoranneviss, M. 2016. Effects of cold plasma treatment on antioxidants activity, phenolic contents and shelf life of fresh and dried walnut (Juglans regia L.) cultivars during storage. LWT, Food Science and Technology, 73: 178–184.
  • Asl, J.P., Rajulapati, V., Gavahian, M., Kapusta, I., Putnik, P., Mousavi Khaneghah, A. and Marszałek, K. 2022. Non-thermal plasma technique for preservation of fresh foods: A review. Food Control, 134: 108560.
  • Bahrami, N., Bayliss, D., Chope, G., Penson, S., Perehinec, T. and Fisk, I. D. 2016. Cold plasma: A new technology to modify wheat flour functionality. Food Chemistry, 202: 247–253.
  • Bangar P. S., Trif M, Ozogul F, Kumar M, Chaudhary V, Vukic M, Tomar M. and Changan S. 2022. Recent developments in cold plasma-based enzyme activity (browning, cell wall degradation, and antioxidant) in fruits and vegetables. Comprehensive Reviews in Food Science and Food Safety, 21(2): 1958-1978. Barbhuiya, R. I., Singha, P. and Singh, S. K. 2021. A comprehensive review on impact of non-thermal processing on the structural changes of food components. Food Research International, 149: 110647.
  • Barbosa-Cánovas, G.V., Donsì, F., Yildiz, S., Candoğan, K., Pokhrel, P.R. and Guaddarrama-Lezama, A.Y. 2022. Nonthermal processing technologies for stabilization and enhancement of bioactive compounds in foods. Food Engineering Review, 14(1): 63–99.
  • Bozkurt, D. 2014. Soğuk plazma uygulamasının vitaminler ve polifenol oksidaz (PFO) enzimi aktivivtesi üzerine etkisi, Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü
  • Bu, F., Nayak, G., Bruggeman, P., Annor, G. and Ismail, B.P. 2022. Impact of plasma reactive species on the structure and functionality of pea protein isolate. Food Chemistry, 371: 131135.
  • Bußler, S., Steins, V., Ehlbeck, J. and Schlüter, O. 2015. Impact of thermal treatment versus cold atmospheric plasma processing on the techno-functional protein properties from Pisum sativum “Salamanca.” Journal of Food Engineering, 167: 166–174.
  • Bußler, S., Rawel, H. M. and Schlüter, O. 2020. Impact of plasma processed air (PPA) on phenolic model systems: Suggested mechanisms and relevance for food applications. Innovative Food Science and Emerging Technologies, 64: 102432.
  • Chaple, S., Sarangapani, C., Jones, J., Carey, E., Causeret, L., Genson, A., Duffy, B. and Bourke, P. 2020. Effect of atmospheric cold plasma on the functional properties of whole wheat (Triticum aestivum L.) grain and wheat flour. Innovative Food Science and Emerging Technologies, 66: 102529.
  • Chen, D., Peng, P., Zhou, N., Cheng, Y., Min, M., Ma, Y., Mao, Q., Chen, P., Chen, C. and Ruan, R. 2019. Evaluation of Cronobacter sakazakii inactivation and physicochemical property changes of non-fat dry milk powder by cold atmospheric plasma. Food Chemistry, 290: 270–276.
  • Chizoba Ekezie, F.-G., Sun, D.-W. and Cheng, J.H. 2017. A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends in Food Science and Technology, 69: 46–58.
  • Coutinho, N.M., Silveira, M.R., Rocha, R.S., Moraes, J., Ferreira, M.V.S., Pimentel, T.C., Freitas, M.Q., Silva, M.C., Raices, R.S.L., Ranadheera, C.S., Borges, F.O., Mathias, S.P., Fernandes, F.A.N., Rodrigues, S. and Cruz, A.G. 2018. Cold plasma processing of milk and dairy products. Trends in Food Science and Technology, 74: 56-68.
  • Dakshayani, R., Paul, A. and Mahendran, R. 2021. Cold plasma-induced effects on bioactive constituents and antioxidant potential of lotus petal powder. IEEE Transactions on Plasma Science, 49(2): 507-512.
  • De Castro, D. R. G., Mar, J. M., da Silva, L. S., da Silva, K. A., Sanches, E. A., de Araújo Bezerra, J., Rodrigues, S., Fernandes, F.A.N. and Campelo, P. H. 2020. Dielectric barrier atmospheric cold plasma applied on camu-camu juice processing: Effect of the excitation frequency. Food Research International, 131: 109044.
  • Dharini, M., Jaspin, S. and Mahendran R. 2023. Cold plasma reactive species: Generation, properties, and interaction with food biomolecules. Food Chemistry, 405: 134746.
  • Fernandes, F. A. N., Santos, V. O. and Rodrigues, S. 2019. Effects of glow plasma technology on some bioactive compounds of acerola juice. Food Research International, 115: 16-22.
  • Gavahian, M., Chu, Y.H., Mousavi Khaneghah, A., Barba, F. J. and Misra, N. N. 2018. A critical analysis of the cold plasma induced lipid oxidation in foods. Trends in Food Science and Technology, 77: 32–41.
  • Guo, Z., Gou, Q., Yang, L., Yu, Q., li. and Han, L. 2022. Dielectric barrier discharge plasma: A green method to change structure of potato starch and improve physicochemical properties of potato starch films. Food Chemistry, 370: 130992.
  • Hosseini, S.I., Farrokhi, N., Shokri, K., Khani, M.R. and Shokri, B. 2018. Cold low pressure O2 plasma treatment of Crocus sativus: an efficient way to eliminate toxicogenic fungi with minor effect on molecular and cellular properties of saffron. Food Chemistry, 257: 310-315.
  • Hou, Y., Wang, R., Gan, Z., Shao, T., Zhang, X., He, M. and Sun, A. 2019. Effect of cold plasma on blueberry juice quality. Food Chemistry, 290: 79–86.
  • Kandemir, H., Aydın-Kandemir, F., Güler, B. ve Gurel, A. 2021. Soğuk plazma teknolojisi ve tarımdaki çeşitli uygulama alanları. Bursa Uludag Üniv. Ziraat Fak. Derg., 35(1): 217-245.
  • Kim, H. J., Jayasena, D. D., Yong, H. I., Alahakoon, A. U., Park, S., Park, J., Choe, W. and Jo, C. 2015. Effect of atmospheric pressure plasma jet on the foodborne pathogens attached to commercial food containers. Journal of Food Science and Technology, 52(12): 8410–8415.
  • Kim, T. H., Lee, J., Kim, H.-J. and Jo, C. 2017. Plasma-induced degradation of quercetin associated with the enhancement of biological activities. Journal of Agricultural and Food Chemistry, 65(32): 6929–6935.
  • Kopuk, B., Güneş, R. and Palabiyik, I. 2022. Cold plasma modification of food macromolecules and effects on related products. Food Chemistry, 382: 132356.
  • Laroque, D. A., Seó, S. T., Valencia, G. A., Laurindo, J. B. and Carciofi, B. A. M. 2022. Cold plasma in food processing: Design, mechanisms, and application. Journal of Food Engineering, 312: 110748.
  • Manoharan, D., Stephen, J. and Radhakrishnan, M. 2021. Study on low‐pressure plasma system for continuous decontamination of milk and its quality evaluation. Journal of Food Processing and Preservation, 45(2): e15138.
  • Mandal, R., Singh, A. and Singh, A.P. 2018. Recent developments in cold plasma decontamination technology in the food industry. Trends in Food Science and Technology, 80: 93-103.
  • Marcinkowska-Lesiak, M., Wojtasik-Kalinowska, I., Onopiuk, A., Stelmasiak, A., Wierzbicka, A. and Półtorak, A. 2022. Application of atmospheric pressure cold plasma activated plant protein preparations solutions as an alternative curing method for pork sausages. Meat Science, 187: 108751.
  • Mehr, H. M. and Koocheki, A. 2020. Effect of atmospheric cold plasma on structure, interfacial and emulsifying properties of Grass pea (Lathyrus sativus L.) protein isolate. Food Hydrocolloids, 106: 105899.
  • Misra, N. N., Kaur, S., Tiwari, B. K., Kaur, A., Singh, N. and Cullen, P. J. 2015. Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocolloids, 44: 115–121.
  • Misra, N. N., Yadav, B., Roopesh, M. S. and Jo, C. 2019. Cold plasma for effective fungal and mycotoxin control in foods: Mechanisms, inactivation effects, and applications. Comprehensive Reviews in Food Science and Food Safety, 18(1): 106-120.
  • Mollakhalili-Meybodi, N., Yousefi, M., Nematollahi, A. and Khorshidian, N. 2021. Effect of atmospheric cold plasma treatment on technological and nutrition functionality of protein in foods. European Food Research and Technology, 247(7): 1579–1594.
  • Mollakhalili-Meybodi, N., Nejati, R., Sayadi, M. and Nematollahi, A. 2022. Novel nonthermal food processing practices: Their influences on nutritional and technological characteristics of cereal proteins. Food Science and Nutrition, 10(6): 1725– 1744.
  • Momeni, M., Tabibiazar, M., Khorram, S., Zakerhamidi, M., Mohammadifar, M., Valizadeh, H. and Ghorbani, M. 2018. Pectin modification assisted by nitrogen glow discharge plasma. International Journal of Biological Macromolecules, 120: 2572-2578.
  • Muhammad, A. I., Liao, X., Cullen, P. J., Liu, D., Xiang, Q., Wang, J., Chen, S., Ye, X. and Ding, T. 2018. Effects of nonthermal plasma technology on functional food components. Comprehensive Reviews in Food Science and Food Safety, 17(5): 1379-1394.
  • Niedźwiedź, I., Płotka-Wasylka, J., Kapusta, I., Simeonov, V., Stój, A., Waśko, A., Pawlat, J. and PolakBerecka, M. 2022. The impact of cold plasma on the phenolic composition and biogenic amine content of red wine. Food Chemistry, 381: 132257.
  • Nyaisaba, B. M., Miao, W., Hatab, S., Siloam, A., Chen, M. and Deng, S. 2019. Effects of cold atmospheric plasma on squid proteases and gel properties of protein concentrate from squid (Argentinus ilex) mantle. Food Chemistry, 291: 68-76.
  • Paixão, L. M. N., Fonteles, T. V., Oliveira, V. S., Fernandes, F. A. N. and Rodrigues, S. 2019. Cold plasma effects on functional compounds of siriguela juice. Food and Bioprocess Technology, 12(1): 110-121.
  • Pal, P., Kaur, P., Singh, N., Kaur, A.P., Misra, N.N., Tiwari, B.K., Cullen, P.J. and Virdi, A.S. 2016. Effect of nonthermal plasma on physico-chemical, amino acid composition, pasting and protein characteristics of short and long grain rice flour. Food Research International, 81: 50-57.
  • Pan, Y., Cheng, J.h. and Sun, D. W. 2019. Cold plasma‐mediated treatments for shelf life extension of fresh produce: A review of recent research developments. Comprehensive Reviews in Food Science and Food Safety, 18(5): 1312–1326.
  • Pérez-Andrés, J. M., Álvarez, C., Cullen, P. J. and Tiwari, B. K. 2019. Effect of cold plasma on the techno-functional properties of animal protein food ingredients. Innovative Food Science and Emerging Technologies, 58: 102205.
  • Phan, K. T. K., Phan, H. T., Brennan, C. S. and Phimolsiripol, Y. 2017. Nonthermal plasma for pesticide and microbial elimination on fruits and vegetables: An overview. International Journal of Food Science and Technology, 52(10): 2127–2137.
  • Pohl, P., A. Dzimitrowicz., P. Cyganowski. and P. Jamróz. 2022. Do we need cold plasma treated fruit and vegetable juices? A case study of positive and negative changes occurred in these daily beverages. Food Chemistry, 375: 131831.
  • Pour, A.K., Khorram, S., Ehsani, A., Ostadrahimi, A. and Ghasempour, Z. 2022. Atmospheric cold plasma effect on quality attributes of banana slices: Its potential use in blanching process. Innovative Food Science and Emerging Technologies, 76: 102945.
  • Puligundla, P., Kim, J.W. and Mok, C. 2017. Effect of corona discharge plasma jet treatment on decontamination and sprouting of rapeseed (Brassica napus L.) seeds. Food Control, 71: 376–382.
  • Puprasit, K., Wongsawaeng, D., Ngaosuwan, K., Kiatkittipong, W. and Assabumrungrat, S. 2020. Non-thermal dielectric barrier discharge plasma hydrogenation for production of margarine with low trans-fatty acid formation. Innovative Food Science and Emerging Technologies, 66: 102511.
  • Ramazzina, I., Berardinelli, A., Rizzi, F., Tappi, S., Ragni, L., Sacchetti, G. and Rocculi, P. 2015. Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biology and Technology, 107: 55–65.
  • Rashid, F., Bao, Y., Ahmed, Z. and Huang, J.Y. 2020. Effect of high voltage atmospheric cold plasma on extraction of fenugreek galactomannan and its physicochemical properties. Food Research International, 138: 109776.
  • Sarangapani, C., Ryan Keogh, D., Dunne, J., Bourke, P. and Cullen, P. J. 2017a. Characterisation of cold plasma treated beef and dairy lipids using spectroscopic and chromatographic methods. Food Chemistry, 235: 324–333.
  • Sarangapani, C., Yamuna Devi, R., Thirumdas, R., Trimukhe, A. M., Deshmukh, R. R. and Annapure, U. S. 2017b. Physico-chemical properties of low-pressure plasma treated black gram. LWT - Food Science and Technology, 79: 102–110.
  • Sarangapani, C., O’Toole, G., Cullen, P. J. and Bourke, P. 2017c. Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science and Emerging Technologies, 44: 235– 241.
  • Sarangapani, C., Patange, A., Bourke, P., Keener, K. and Cullen, P. J. 2018. Recent advances in the application of cold plasma technology in foods. Annual Review of Food Science and Technology, 9(1): 609–629.
  • Saremnezhad, S., Soltani, M., Faraji, A. and Hayaloglu, A. A. 2021. Chemical changes of food constituents during cold plasma processing: A review. Food Research International, 147: 110552.
  • Segat, A., Misra, N. N., Cullen, P. J. and Innocente, N. 2015. Atmospheric pressure cold plasma (ACP) treatment of whey protein isolate model solution. Innovative Food Science and Emerging Technologies, 29: 247–254.
  • Sharafodin, H. and Soltanizadeh, N. 2022. Potential application of DBD plasma technique for modifying structural and physicochemical properties of soy protein isolate. Food Hydrocolloids, 122: 107077.
  • Sharma, S. and Singh, R.K. 2020. Cold plasma treatment of dairy proteins in relation to functionality enhancement. Trends in Food Science and Technology, 102: 30-36.
  • Sruthi, N. U., Josna, K., Pandiselvam, R., Kothakota, A., Gavahian, M. and Mousavi Khaneghah, A. 2022. Impacts of cold plasma treatment on physicochemical, functional, bioactive, textural, and sensory attributes of food: A comprehensive review. Food Chemistry, 368: 130809.
  • Starek, A., Sagan, A., Andrejko, D., Chudzik, B., Kobus, Z., Kwiatkowski, M., Terebun, P. and Pawłat, J. 2020. Possibility to extend the shelf life of NFC tomato juice using cold atmospheric pressure plasma. Scientific Reports, 10: 20959.
  • Surowsky, B., Bußler, S. and Schlüter, O. K. 2016. Cold plasma interactions with food constituents in liquid and solid food matrices. Cold Plasma in Food and Agriculture: Fundamentals and Applications, 7: 179–203.
  • Şen, Y. 2015. Atmosferik basınç plazma uygulamasının gıdaların dekontaminasyonu ve detoksifikasyonu amacıyla kullanımı. Doktora Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü
  • Takai, E., Kitamura, T., Kuwabara, J., Ikawa, S., Yoshizawa, S., Shiraki, K., Kawasaki, H., Arakawa, R. and Kitano, K. 2014. Chemical modification of amino acids by atmospheric-pressure cold plasma in aqueous solution. Journal of Physics D: Applied Physics, 47(28): 285403.
  • Tappi, S., Gozzi, G., Vannini, L., Berardinelli, A., Romani, S., Ragni, L. and Rocculi, P. 2016. Cold plasma treatment for fresh-cut melon stabilization. Innovative Food Science and Emerging Technologies, 33: 225– 233.
  • Thirumdas, R., Kadam, D. and Annapure, U. S. 2017. Cold Plasma: an Alternative Technology for the Starch Modification. Food Biophysics, 12(1): 129–139.
  • Vandamme, J., Nikiforov, A., Dujardin, K., Leys, C., De Cooman, L. and Van Durme, J. 2015. Critical evaluation of non-thermal plasma as an innovative accelerated lipid oxidation technique in fish oil. Food Research International, 72: 115–125.
  • Wan, Z., Misra, N. N., Li, G. and Keener, K. M. 2021. High voltage atmospheric cold plasma treatment of Listeria innocua and Escherichia coli K-12 on Queso Fresco (fresh cheese). LWT, 146: 111406.
  • Wang, S., Liu, Y., Zhang, Y., Lü, X., Zhao, L., Song, Y., Zhang, L., Jiang, H., Zhang, J. and Ge, W. 2022. Processing sheep milk by cold plasma technology: Impacts on the microbial inactivation, physicochemical characteristics, and protein structure. LWT, 153: 112573.
  • Warne, G. R., Williams, P. M., Pho, H. Q., Tran, N. N., Hessel, V. and Fisk, I. D. 2021. Impact of cold plasma on the biomolecules and organoleptic properties of foods: A review. Journal of Food Science, 86(9): 3762– 3777. Web of science 2023, a8f59890210bb2a36cc265c34c80a801c14e01d5.vetisonline.com/wos/woscc/basic-search, (Erişim Tarihi: 12.01.2023)
  • Won, M. Y., Lee, S. J. and Min, S. C. 2017. Mandarin preservation by microwave-powered cold plasma treatment. Innovative Food Science and Emerging Technologies, 39: 25–32.
  • Wu, X., Luo, Y., Zhao, F., M, S. M. and Mu, G. 2020. Influence of dielectric barrier discharge cold plasma on physicochemical property of milk for sterilization. Plasma Processes and Polymers, 18: 201900219.
  • Xu, Y., Tian, Y., Ma, R., Liu, Q. and Zhang, J. 2016. Effect of plasma activated water on the postharvest quality of button mushrooms, Agaricus bisporus. Food Chemistry, 197: 436–444.
  • Yangıç Yüksel, Ç. ve Karagözlü, N. 2017. Soğuk atmosferik plazma teknolojisi ve gıdalarda kullanımı. Adnan Manderes Üniversitesi Ziraat Fakültesi Dergisi, 14(2): 81-86.
  • Yepez, X. V. and Keener, K. M. 2016. High-voltage Atmospheric Cold Plasma (HVACP) hydrogenation of soybean oil without trans-fatty acids. Innovative Food Science and Emerging Technologies, 38: 169–174.
  • Zhang, H., Ma, D., Qiu, R., Tang, Y. and Du, C. 2017. Non-thermal plasma technology for organic contaminated soil remediation: A review. Chemical Engineering Journal, 313: 157–170.
  • Zhang, Q., Cheng, Z., Zhang, J., Nasiru, M. M., Wang, Y. and Fu, L. 2020. Atmospheric cold plasma treatment of soybean protein isolate: insights into the structural, physicochemical, and allergenic characteristics. Journal of Food Science, 86(1): 68–77.
  • Zhang, S., Huang, W., Feizollahi, E., Roopesh, M. S. and Chen, L. 2021. Improvement of pea protein gelation at reduced temperature by atmospheric cold plasma and the gelling mechanism study. Innovative Food Science and Emerging Technologies, 67: 102567.
  • Zhang, K., Zhang, Z., Zhao, M., Milosavljevic, V., Cullen, P.J., Scally, L., Sun, Da-W. and Tiwari, B. 2021. Low-pressure plasma modification of the rheological properties of tapioca starch. Food Hydrocolloids, 125: 107380.
  • Zhao, Y., Patange, A., Sun, D.W. and Tiwari, B. 2020. Plasma‐activated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry. Comprehensive Reviews in Food Science and Food Safety, 19(6): 3951–3979.
  • Zhou, R., Zhou, R., Zhuang, J., Zong, Z., Zhang, X., Liu, D., Bazaka, K. and Ostrikov, K. 2016. Interaction of atmospheric-pressure air microplasmas with amino acids as fundamental processes in aqueous solution. PLOS ONE, 11(5): e0155584.
Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1982
  • Yayıncı: Bursa Uludağ Üniversitesi
Sayıdaki Diğer Makaleler

Soğuk Plazma Uygulamasının Gıda Bileşenleri Üzerine Etkileri

Ömer Şerif AYDIN, Pınar MANARGA BİRLİK, Yasemin ŞAHAN

İnsan Bağırsak Mikrobiyomu Covid-19 İçin Tedavi Stratejileriyle İlişkilendiren Mekanizmalar

Nihat AKIN, Damla ÖZIŞIK

Bazı Ekmeklik ve Makarnalık Buğday Çeşitlerinde Sarı Pas Hastalığının Fenolojik Dönemlere göre Hastalık-Verim İlişkisinin Çok Bantlı (Hiperspektral) Veriler Kullanılarak Araştırılması

Metin AYDOĞDU, Kadir AKAN

Bazı Şeker Sorgum (Sorghum bicolor var. saccharatum (L.) Mohlenbr.) Çeşitlerinde Kuraklık Stresinin Çimlenme Özellikleri Üzerine Etkisi

Sebiha EROL, Tarık KARABAĞ, Emine BUDAKLI ÇARPICI

Mikofag Coccinellidae (Coleoptera) Türleri ve Biyolojik Mücadeledeki Potansiyelleri

Furkan YALÇIN, Selma ÜLGENTÜRK

Hendek İlçesi Süt Sığırcılığı İşletmelerinde Buzağılarda Yaşama Gücü İle İlgili Yönetsel Uygulamalar- I

Merve KARACA, Mehmet KOYUNCU

Algının Mekan Değerlendirmesi Üzerine Etkisi: Bursa Hanlar Bölgesi Örneği

Elvan ENDER ALTAY, Sena ŞENGÜL

Ayçiçeğinde Küllemenin Makine Öğrenimine Dayalı Tespiti ve Şiddetinin Değerlendirilmesi: Hassas Tarım Yaklaşımı

Alperen Kaan BÜTÜNER, Yavuz Selim ŞAHİN, Atilla ERDİNÇ, Hilal ERDOĞAN

Bursa İlinde Tüketicilerin Kırmızı Et Tüketim Tercihlerinin Belirlenmesi Üzerine Bir Araştırma

İsmail Bülent GÜRBÜZ, Simge ER, Özgecan KADAĞAN

Holistik Beslenme Yaklaşımı: Ruhsal, Zihinsel ve Fiziksel Beslenme

Buket AYDENİZ-GÜNEŞER, Azime Miray KAHRAMAN