Soğuk Plazma Uygulamasının Gıda Bileşenleri Üzerine Etkileri
Isıl işlemlerin gıdaların duyusal özelliklerinde sebep olabildiği değişim, protein denatürasyonu, vitamin kaybı gibi olumsuz etkiler ve tüketici beklentileri çalışmaları ultrases, ışınlama, yüksek hidrostatik basınç, vurgulu elektrik alan, ohmik ısıtma, mikrofiltrasyon, gibi ısıl olmayan teknolojilere yönlendirmektedir. Söz konusu teknolojiler içerisinde bulunan soğuk plazma uygulamaları düşük maliyet, kısa işlem süresi ve gıda güvenliği açısından son yıllarda önem kazanmaktadır. Ancak arzu edilen ürün kalitesine ulaşabilmek için soğuk plazma uygulamasının, gıda bileşenleri ile etkileşimleri ve bu etkileşimlerin sonuçlarının bilinmesi gerekmektedir. Bu çalışmada gıdalardaki soğuk plazma uygulamalarının, protein, lipid, karbonhidrat ve biyoaktif bileşenler gibi gıda bileşenleri üzerine etkileri derlenmiştir.
Effects of Cold Plasma Application on Food Components
Negative effects such as changes in sensory properties, protein denaturation, loss of vitamins and consumer expectations that heat treatments can cause in foods lead studies to non-thermal technologies such as ultrasound, irradiation, high hydrostatic pressure, pulsed electric field, ohmic heating, microfiltration. In recent years, cold plasma applications, among these technologies, have gained importance in terms of cost, short
processing time and food safety. However, in order to achieve the desired product quality, it is necessary to know the cold plasma application interactions with food components. Therefore, this review were explore the effects of cold plasma applications in food components such as protein, lipid, carbohydrate and bioactive components.
___
- Almeida, F. D. L., Cavalcante, R. S., Cullen, P. J., Frias, J. M., Bourke, P., Fernandes, F. A. N.
and Rodrigues, S. 2015. Effects of atmospheric cold plasma and ozone on prebiotic orange juice. Innovative
Food Science and Emerging Technologies, 32: 127–135.
- Alves Filho, E. G., Silva, L. M. A., Oiram Filho, F., Rodrigues, S., Fernandes, F. A. N., Gallão, M. I., Mattison,
C.P. and de Brito, E. S. 2019. Cold plasma processing effect on cashew nuts composition and allergenicity.
Food Research International, 125: 108621.
- Amini, M. and Ghoranneviss, M. 2016. Effects of cold plasma treatment on antioxidants activity, phenolic
contents and shelf life of fresh and dried walnut (Juglans regia L.) cultivars during storage. LWT, Food
Science and Technology, 73: 178–184.
- Asl, J.P., Rajulapati, V., Gavahian, M., Kapusta, I., Putnik, P., Mousavi Khaneghah, A. and Marszałek, K. 2022.
Non-thermal plasma technique for preservation of fresh foods: A review. Food Control, 134: 108560.
- Bahrami, N., Bayliss, D., Chope, G., Penson, S., Perehinec, T. and Fisk, I. D. 2016. Cold plasma: A new
technology to modify wheat flour functionality. Food Chemistry, 202: 247–253.
- Bangar P. S., Trif M, Ozogul F, Kumar M, Chaudhary V, Vukic M, Tomar M. and Changan S. 2022. Recent
developments in cold plasma-based enzyme activity (browning, cell wall degradation, and antioxidant) in
fruits and vegetables. Comprehensive Reviews in Food Science and Food Safety, 21(2): 1958-1978.
Barbhuiya, R. I., Singha, P. and Singh, S. K. 2021. A comprehensive review on impact of non-thermal
processing on the structural changes of food components. Food Research International, 149: 110647.
- Barbosa-Cánovas, G.V., Donsì, F., Yildiz, S., Candoğan, K., Pokhrel, P.R. and Guaddarrama-Lezama, A.Y.
2022. Nonthermal processing technologies for stabilization and enhancement of bioactive compounds in
foods. Food Engineering Review, 14(1): 63–99.
- Bozkurt, D. 2014. Soğuk plazma uygulamasının vitaminler ve polifenol oksidaz (PFO) enzimi aktivivtesi üzerine
etkisi, Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü
- Bu, F., Nayak, G., Bruggeman, P., Annor, G. and Ismail, B.P. 2022. Impact of plasma reactive species on the
structure and functionality of pea protein isolate. Food Chemistry, 371: 131135.
- Bußler, S., Steins, V., Ehlbeck, J. and Schlüter, O. 2015. Impact of thermal treatment versus cold atmospheric
plasma processing on the techno-functional protein properties from Pisum sativum “Salamanca.” Journal of Food Engineering, 167: 166–174.
- Bußler, S., Rawel, H. M. and Schlüter, O. 2020. Impact of plasma processed air (PPA) on phenolic model
systems: Suggested mechanisms and relevance for food applications. Innovative Food Science and Emerging Technologies, 64: 102432.
- Chaple, S., Sarangapani, C., Jones, J., Carey, E., Causeret, L., Genson, A., Duffy, B. and Bourke, P. 2020. Effect
of atmospheric cold plasma on the functional properties of whole wheat (Triticum aestivum L.) grain and
wheat flour. Innovative Food Science and Emerging Technologies, 66: 102529.
- Chen, D., Peng, P., Zhou, N., Cheng, Y., Min, M., Ma, Y., Mao, Q., Chen, P., Chen, C. and Ruan, R.
2019. Evaluation of Cronobacter sakazakii inactivation and physicochemical property changes of non-fat dry milk powder by cold atmospheric plasma. Food Chemistry, 290: 270–276.
- Chizoba Ekezie, F.-G., Sun, D.-W. and Cheng, J.H. 2017. A review on recent advances in cold plasma
technology for the food industry: Current applications and future trends. Trends in Food Science and
Technology, 69: 46–58.
- Coutinho, N.M., Silveira, M.R., Rocha, R.S., Moraes, J., Ferreira, M.V.S., Pimentel, T.C., Freitas, M.Q., Silva,
M.C., Raices, R.S.L., Ranadheera, C.S., Borges, F.O., Mathias, S.P., Fernandes, F.A.N., Rodrigues, S. and
Cruz, A.G. 2018. Cold plasma processing of milk and dairy products. Trends in Food Science and
Technology, 74: 56-68.
- Dakshayani, R., Paul, A. and Mahendran, R. 2021. Cold plasma-induced effects on bioactive constituents and
antioxidant potential of lotus petal powder. IEEE Transactions on Plasma Science, 49(2): 507-512.
- De Castro, D. R. G., Mar, J. M., da Silva, L. S., da Silva, K. A., Sanches, E. A., de Araújo Bezerra, J.,
Rodrigues, S., Fernandes, F.A.N. and Campelo, P. H. 2020. Dielectric barrier atmospheric cold plasma applied on camu-camu juice processing: Effect of the excitation frequency. Food Research International,
131: 109044.
- Dharini, M., Jaspin, S. and Mahendran R. 2023. Cold plasma reactive species: Generation, properties, and
interaction with food biomolecules. Food Chemistry, 405: 134746.
- Fernandes, F. A. N., Santos, V. O. and Rodrigues, S. 2019. Effects of glow plasma technology on some bioactive
compounds of acerola juice. Food Research International, 115: 16-22.
- Gavahian, M., Chu, Y.H., Mousavi Khaneghah, A., Barba, F. J. and Misra, N. N. 2018. A critical analysis of the
cold plasma induced lipid oxidation in foods. Trends in Food Science and Technology, 77: 32–41.
- Guo, Z., Gou, Q., Yang, L., Yu, Q., li. and Han, L. 2022. Dielectric barrier discharge plasma: A green method to
change structure of potato starch and improve physicochemical properties of potato starch films. Food
Chemistry, 370: 130992.
- Hosseini, S.I., Farrokhi, N., Shokri, K., Khani, M.R. and Shokri, B. 2018. Cold low pressure O2 plasma
treatment of Crocus sativus: an efficient way to eliminate toxicogenic fungi with minor effect on molecular
and cellular properties of saffron. Food Chemistry, 257: 310-315.
- Hou, Y., Wang, R., Gan, Z., Shao, T., Zhang, X., He, M. and Sun, A. 2019. Effect of cold plasma on blueberry
juice quality. Food Chemistry, 290: 79–86.
- Kandemir, H., Aydın-Kandemir, F., Güler, B. ve Gurel, A. 2021. Soğuk plazma teknolojisi ve tarımdaki çeşitli
uygulama alanları. Bursa Uludag Üniv. Ziraat Fak. Derg., 35(1): 217-245.
- Kim, H. J., Jayasena, D. D., Yong, H. I., Alahakoon, A. U., Park, S., Park, J., Choe, W. and Jo, C. 2015. Effect
of atmospheric pressure plasma jet on the foodborne pathogens attached to commercial food containers.
Journal of Food Science and Technology, 52(12): 8410–8415.
- Kim, T. H., Lee, J., Kim, H.-J. and Jo, C. 2017. Plasma-induced degradation of quercetin associated with the
enhancement of biological activities. Journal of Agricultural and Food Chemistry, 65(32): 6929–6935.
- Kopuk, B., Güneş, R. and Palabiyik, I. 2022. Cold plasma modification of food macromolecules and effects on
related products. Food Chemistry, 382: 132356.
- Laroque, D. A., Seó, S. T., Valencia, G. A., Laurindo, J. B. and Carciofi, B. A. M. 2022. Cold plasma in food
processing: Design, mechanisms, and application. Journal of Food Engineering, 312: 110748.
- Manoharan, D., Stephen, J. and Radhakrishnan, M. 2021. Study on low‐pressure plasma system for continuous
decontamination of milk and its quality evaluation. Journal of Food Processing and Preservation, 45(2):
e15138.
- Mandal, R., Singh, A. and Singh, A.P. 2018. Recent developments in cold plasma decontamination technology
in the food industry. Trends in Food Science and Technology, 80: 93-103.
- Marcinkowska-Lesiak, M., Wojtasik-Kalinowska, I., Onopiuk, A., Stelmasiak, A., Wierzbicka, A. and Półtorak,
A. 2022. Application of atmospheric pressure cold plasma activated plant protein preparations solutions as an alternative curing method for pork sausages. Meat Science, 187: 108751.
- Mehr, H. M. and Koocheki, A. 2020. Effect of atmospheric cold plasma on structure, interfacial and emulsifying
properties of Grass pea (Lathyrus sativus L.) protein isolate. Food Hydrocolloids, 106: 105899.
- Misra, N. N., Kaur, S., Tiwari, B. K., Kaur, A., Singh, N. and Cullen, P. J. 2015. Atmospheric pressure cold
plasma (ACP) treatment of wheat flour. Food Hydrocolloids, 44: 115–121.
- Misra, N. N., Yadav, B., Roopesh, M. S. and Jo, C. 2019. Cold plasma for effective fungal and mycotoxin
control in foods: Mechanisms, inactivation effects, and applications. Comprehensive Reviews in Food
Science and Food Safety, 18(1): 106-120.
- Mollakhalili-Meybodi, N., Yousefi, M., Nematollahi, A. and Khorshidian, N. 2021. Effect of atmospheric cold
plasma treatment on technological and nutrition functionality of protein in foods. European Food Research
and Technology, 247(7): 1579–1594.
- Mollakhalili-Meybodi, N., Nejati, R., Sayadi, M. and Nematollahi, A. 2022. Novel nonthermal food processing
practices: Their influences on nutritional and technological characteristics of cereal proteins. Food Science
and Nutrition, 10(6): 1725– 1744.
- Momeni, M., Tabibiazar, M., Khorram, S., Zakerhamidi, M., Mohammadifar, M., Valizadeh, H. and Ghorbani,
M. 2018. Pectin modification assisted by nitrogen glow discharge plasma. International Journal of
Biological Macromolecules, 120: 2572-2578.
- Muhammad, A. I., Liao, X., Cullen, P. J., Liu, D., Xiang, Q., Wang, J., Chen, S., Ye, X. and Ding, T.
2018. Effects of nonthermal plasma technology on functional food components. Comprehensive Reviews in
Food Science and Food Safety, 17(5): 1379-1394.
- Niedźwiedź, I., Płotka-Wasylka, J., Kapusta, I., Simeonov, V., Stój, A., Waśko, A., Pawlat, J. and PolakBerecka, M. 2022. The impact of cold plasma on the phenolic composition and biogenic amine content of red
wine. Food Chemistry, 381: 132257.
- Nyaisaba, B. M., Miao, W., Hatab, S., Siloam, A., Chen, M. and Deng, S. 2019. Effects of cold atmospheric
plasma on squid proteases and gel properties of protein concentrate from squid (Argentinus ilex) mantle.
Food Chemistry, 291: 68-76.
- Paixão, L. M. N., Fonteles, T. V., Oliveira, V. S., Fernandes, F. A. N. and Rodrigues, S. 2019. Cold plasma
effects on functional compounds of siriguela juice. Food and Bioprocess Technology, 12(1): 110-121.
- Pal, P., Kaur, P., Singh, N., Kaur, A.P., Misra, N.N., Tiwari, B.K., Cullen, P.J. and Virdi, A.S. 2016. Effect of
nonthermal plasma on physico-chemical, amino acid composition, pasting and protein characteristics of short and long grain rice flour. Food Research International, 81: 50-57.
- Pan, Y., Cheng, J.h. and Sun, D. W. 2019. Cold plasma‐mediated treatments for shelf life extension of fresh
produce: A review of recent research developments. Comprehensive Reviews in Food Science and Food
Safety, 18(5): 1312–1326.
- Pérez-Andrés, J. M., Álvarez, C., Cullen, P. J. and Tiwari, B. K. 2019. Effect of cold plasma on the techno-functional properties of animal protein food ingredients. Innovative Food Science and Emerging
Technologies, 58: 102205.
- Phan, K. T. K., Phan, H. T., Brennan, C. S. and Phimolsiripol, Y. 2017. Nonthermal plasma for pesticide and
microbial elimination on fruits and vegetables: An overview. International Journal of Food Science and
Technology, 52(10): 2127–2137.
- Pohl, P., A. Dzimitrowicz., P. Cyganowski. and P. Jamróz. 2022. Do we need cold plasma treated fruit and
vegetable juices? A case study of positive and negative changes occurred in these daily beverages. Food
Chemistry, 375: 131831.
- Pour, A.K., Khorram, S., Ehsani, A., Ostadrahimi, A. and Ghasempour, Z. 2022. Atmospheric cold plasma effect
on quality attributes of banana slices: Its potential use in blanching process. Innovative Food Science and
Emerging Technologies, 76: 102945.
- Puligundla, P., Kim, J.W. and Mok, C. 2017. Effect of corona discharge plasma jet treatment on
decontamination and sprouting of rapeseed (Brassica napus L.) seeds. Food Control, 71: 376–382.
- Puprasit, K., Wongsawaeng, D., Ngaosuwan, K., Kiatkittipong, W. and Assabumrungrat, S. 2020. Non-thermal
dielectric barrier discharge plasma hydrogenation for production of margarine with low trans-fatty acid
formation. Innovative Food Science and Emerging Technologies, 66: 102511.
- Ramazzina, I., Berardinelli, A., Rizzi, F., Tappi, S., Ragni, L., Sacchetti, G. and Rocculi, P. 2015. Effect of cold
plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biology and Technology, 107: 55–65.
- Rashid, F., Bao, Y., Ahmed, Z. and Huang, J.Y. 2020. Effect of high voltage atmospheric cold plasma on
extraction of fenugreek galactomannan and its physicochemical properties. Food Research International,
138: 109776.
- Sarangapani, C., Ryan Keogh, D., Dunne, J., Bourke, P. and Cullen, P. J. 2017a. Characterisation of cold plasma
treated beef and dairy lipids using spectroscopic and chromatographic methods. Food Chemistry, 235: 324–333.
- Sarangapani, C., Yamuna Devi, R., Thirumdas, R., Trimukhe, A. M., Deshmukh, R. R. and Annapure, U. S.
2017b. Physico-chemical properties of low-pressure plasma treated black gram. LWT - Food Science and
Technology, 79: 102–110.
- Sarangapani, C., O’Toole, G., Cullen, P. J. and Bourke, P. 2017c. Atmospheric cold plasma dissipation
efficiency of agrochemicals on blueberries. Innovative Food Science and Emerging Technologies, 44: 235–
241.
- Sarangapani, C., Patange, A., Bourke, P., Keener, K. and Cullen, P. J. 2018. Recent advances in the application
of cold plasma technology in foods. Annual Review of Food Science and Technology, 9(1): 609–629.
- Saremnezhad, S., Soltani, M., Faraji, A. and Hayaloglu, A. A. 2021. Chemical changes of food constituents
during cold plasma processing: A review. Food Research International, 147: 110552.
- Segat, A., Misra, N. N., Cullen, P. J. and Innocente, N. 2015. Atmospheric pressure cold plasma (ACP)
treatment of whey protein isolate model solution. Innovative Food Science and Emerging Technologies, 29:
247–254.
- Sharafodin, H. and Soltanizadeh, N. 2022. Potential application of DBD plasma technique for modifying
structural and physicochemical properties of soy protein isolate. Food Hydrocolloids, 122: 107077.
- Sharma, S. and Singh, R.K. 2020. Cold plasma treatment of dairy proteins in relation to functionality
enhancement. Trends in Food Science and Technology, 102: 30-36.
- Sruthi, N. U., Josna, K., Pandiselvam, R., Kothakota, A., Gavahian, M. and Mousavi Khaneghah, A.
2022. Impacts of cold plasma treatment on physicochemical, functional, bioactive, textural, and sensory
attributes of food: A comprehensive review. Food Chemistry, 368: 130809.
- Starek, A., Sagan, A., Andrejko, D., Chudzik, B., Kobus, Z., Kwiatkowski, M., Terebun, P. and Pawłat, J.
2020. Possibility to extend the shelf life of NFC tomato juice using cold atmospheric pressure plasma.
Scientific Reports, 10: 20959.
- Surowsky, B., Bußler, S. and Schlüter, O. K. 2016. Cold plasma interactions with food constituents in liquid and
solid food matrices. Cold Plasma in Food and Agriculture: Fundamentals and Applications, 7: 179–203.
- Şen, Y. 2015. Atmosferik basınç plazma uygulamasının gıdaların dekontaminasyonu ve detoksifikasyonu
amacıyla kullanımı. Doktora Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü
- Takai, E., Kitamura, T., Kuwabara, J., Ikawa, S., Yoshizawa, S., Shiraki, K., Kawasaki, H., Arakawa, R. and
Kitano, K. 2014. Chemical modification of amino acids by atmospheric-pressure cold plasma in aqueous
solution. Journal of Physics D: Applied Physics, 47(28): 285403.
- Tappi, S., Gozzi, G., Vannini, L., Berardinelli, A., Romani, S., Ragni, L. and Rocculi, P. 2016. Cold plasma
treatment for fresh-cut melon stabilization. Innovative Food Science and Emerging Technologies, 33: 225–
233.
- Thirumdas, R., Kadam, D. and Annapure, U. S. 2017. Cold Plasma: an Alternative Technology for the Starch
Modification. Food Biophysics, 12(1): 129–139.
- Vandamme, J., Nikiforov, A., Dujardin, K., Leys, C., De Cooman, L. and Van Durme, J. 2015. Critical
evaluation of non-thermal plasma as an innovative accelerated lipid oxidation technique in fish oil. Food
Research International, 72: 115–125.
- Wan, Z., Misra, N. N., Li, G. and Keener, K. M. 2021. High voltage atmospheric cold plasma treatment of
Listeria innocua and Escherichia coli K-12 on Queso Fresco (fresh cheese). LWT, 146: 111406.
- Wang, S., Liu, Y., Zhang, Y., Lü, X., Zhao, L., Song, Y., Zhang, L., Jiang, H., Zhang, J. and Ge, W. 2022.
Processing sheep milk by cold plasma technology: Impacts on the microbial inactivation, physicochemical
characteristics, and protein structure. LWT, 153: 112573.
- Warne, G. R., Williams, P. M., Pho, H. Q., Tran, N. N., Hessel, V. and Fisk, I. D. 2021. Impact of cold plasma
on the biomolecules and organoleptic properties of foods: A review. Journal of Food Science, 86(9): 3762–
3777. Web of science 2023, a8f59890210bb2a36cc265c34c80a801c14e01d5.vetisonline.com/wos/woscc/basic-search,
(Erişim Tarihi: 12.01.2023)
- Won, M. Y., Lee, S. J. and Min, S. C. 2017. Mandarin preservation by microwave-powered cold plasma
treatment. Innovative Food Science and Emerging Technologies, 39: 25–32.
- Wu, X., Luo, Y., Zhao, F., M, S. M. and Mu, G. 2020. Influence of dielectric barrier discharge cold plasma on
physicochemical property of milk for sterilization. Plasma Processes and Polymers, 18: 201900219.
- Xu, Y., Tian, Y., Ma, R., Liu, Q. and Zhang, J. 2016. Effect of plasma activated water on the postharvest quality
of button mushrooms, Agaricus bisporus. Food Chemistry, 197: 436–444.
- Yangıç Yüksel, Ç. ve Karagözlü, N. 2017. Soğuk atmosferik plazma teknolojisi ve gıdalarda kullanımı. Adnan
Manderes Üniversitesi Ziraat Fakültesi Dergisi, 14(2): 81-86.
- Yepez, X. V. and Keener, K. M. 2016. High-voltage Atmospheric Cold Plasma (HVACP) hydrogenation of
soybean oil without trans-fatty acids. Innovative Food Science and Emerging Technologies, 38: 169–174.
- Zhang, H., Ma, D., Qiu, R., Tang, Y. and Du, C. 2017. Non-thermal plasma technology for organic contaminated
soil remediation: A review. Chemical Engineering Journal, 313: 157–170.
- Zhang, Q., Cheng, Z., Zhang, J., Nasiru, M. M., Wang, Y. and Fu, L. 2020. Atmospheric cold plasma treatment
of soybean protein isolate: insights into the structural, physicochemical, and allergenic characteristics.
Journal of Food Science, 86(1): 68–77.
- Zhang, S., Huang, W., Feizollahi, E., Roopesh, M. S. and Chen, L. 2021. Improvement of pea protein gelation at
reduced temperature by atmospheric cold plasma and the gelling mechanism study. Innovative Food Science and Emerging Technologies, 67: 102567.
- Zhang, K., Zhang, Z., Zhao, M., Milosavljevic, V., Cullen, P.J., Scally, L., Sun, Da-W. and Tiwari, B. 2021.
Low-pressure plasma modification of the rheological properties of tapioca starch. Food Hydrocolloids, 125:
107380.
- Zhao, Y., Patange, A., Sun, D.W. and Tiwari, B. 2020. Plasma‐activated water: Physicochemical properties,
microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the
food industry. Comprehensive Reviews in Food Science and Food Safety, 19(6): 3951–3979.
- Zhou, R., Zhou, R., Zhuang, J., Zong, Z., Zhang, X., Liu, D., Bazaka, K. and Ostrikov, K. 2016. Interaction of
atmospheric-pressure air microplasmas with amino acids as fundamental processes in aqueous solution.
PLOS ONE, 11(5): e0155584.