Soğuk Plazma Teknolojisi ve Tarımdaki Çeşitli Uygulama Alanları

Maddenin katı, sıvı ve gaz halinden farklı, kendine özgü özellikleri ile uzun zamandır kullanılan plazma terimi, kısaca “iyonize olmuş gaz” olarak tanımlanmaktadır. Bir gazın ısıltılmaya devam etmesi sonucunda gerçekleşen sıralı reaksiyonlar ile oluşan iyon, elektron ve nötr atom karışımı, plazmanın temel bileşenlerini oluşturmaktadır. Ayrıca plazma içerisinde; fotonlar, elektronlar, serbest radikaller ve nötral atomların yanısıra kovalent bağları parçalamakla görevli, yeterli elektrik enerjisine sahip reaktif türler de bulunmaktadır. Plazma sistemleri; termodinamik özelliklerine (yüksek ve düşük sıcaklık) ve çalışma basınçlarına (düşük basınç ve atmosferik basınç) göre sınıflandırılmaktadır. Düşük sıcaklık plazmaları arasında en yeni teknolojilerden olan soğuk plazma teknolojisi; belirli bir vakum altında ve oda sıcaklığında bulunan gazların, belirli bir elektrik akımı veya elektromanyetik radyasyon uygulaması sonucunda oluşturulan plazma olarak tanımlanmaktadır. Soğuk plazma; etki mekanizmalarının çeşitliliği ve diğer teknolojiler ile birleştirilebilmesini sağlayan uygulama esnekliği sayesinde, doğa ve yaşam bilimleri için yenilikçi, çevre dostu ve ekonomik çözümlerin sunulmasında zengin bir biyoteknolojik kaynaktır. Özellikle son yirmi yıldır soğuk plazma teknolojisi, etki mekanizmasını oluşturan reaktif türlerin biyolojik sistemlerle etkileşime geçebilmesinden dolayı tıp, medikal, çevre, tarım ve gıda gibi alanlarda karşılaşılan problemler için alternatif çözüm önerileri sunmaktadır. Gerçekleştirilen bu derlemede, soğuk plazma teknolojisinin tarım ve bitkisel uygulama olanlarından olan tohum çimlenmesi, tohum dekontaminasyonu, toprak zenginleştirilmesi ve plazma aktif su konuları üzerine yoğunlaşmıştır ve ayrıca in vitro koşullarda bitkisel materyal üzerine olan etkilerinden de bahsedilmiştir.

Cold Plasma Technology and Various Applications Areas In Plants

Different from the solid, liquid and gaseous state of the matter, the term plasma, which has been used for a long time by its unique properties, is briefly defined as “ionized gas”. The mixture of ions, electrons and neutral atoms formed by sequential reactions that occur as a result of the heating of a gas constitutes the basic components of the plasma. There are also photons, electrons, free radicals and neutral atoms in the plasma, as well as reactive species with sufficient electrical energy, which are responsible for breaking down covalent bonds. Plasma systems; thermodynamic properties (high temperature and low temperature) and operating pressures (low pressure and atmospheric pressure). Cold plasma technology, one of the newest technologies among low temperature plasmas; is defined as the plasma produced by the application of a certain electric current or electromagnetic radiation of gases present under a certain vacuum and at room temperature. Cold plasma; It is a generous biotechnological resource in the provision of innovative, environmentally friendly and economical solutions for the natural and life sciences, thanks to the variety of its mechanisms of action and its flexibility in application which allows it to be combined with other technologies. Especially in the last two decades, cold plasma technology offers alternative solutions for problems encountered in medicine, medical, environment, agriculture and food, because of reactive species that make up the mechanism of action can interact with biological systems. In this review, agricultural applications of cold plasma, seed germination and seed decontamination, soil enrichment, plasma active water applications and also effects of plasma on plant material in vitro are discussed.

___

  • Abdi, S., Dorranian, D., & Mohammadi, K. 2016. Effect of oxygen on decontamination of cumin seeds by atmospheric pressure dielectric barrier discharge plasma. Plasma Medicine, 6(3-4), 339–347.
  • Aggelopoulos, C. A., Tsakiroglou, C. D., Ognier, S., & Cavadias, S. 2013. Ex situ soil remediation by cold atmospheric plasma discharge. Procedia Environmental Sciences, 18, 649-656.
  • Akan, T. 2006. Maddenin 4. Hali Plazma ve Temel Özellikleri. Elektronik Çağdaş Fizik Dergisi, 4.
  • Altman, A. 2019. Plant tissue culture and biotechnology: Perspectives in the history and prospects of the International Association of Plant Biotechnology (IAPB). In Vitro Cellular & Developmental Biology-Plant, 55(5), 590-594.
  • Anis, M. and Ahmad, N. 2016. Plant tissue culture: a journey from research to commercialization: Plant Tissue Culture: Propagation, Conservation and Crop Improvement. Springer, Singapore, pp: 3-13.
  • Attri, P., Arora, B. and Choi, E. H. 2017. Retraction: Utility of plasma: a new road from physics to chemistry. RSC Advances, 7(26), 15735-15735.
  • Babajani, A., Iranbakhsh, A., Ardebili, Z.O. and Eslami, B. 2019. Seed priming with non-thermal plasma modified plant reactions to selenium or zinc oxide nanoparticles: cold plasma as a novel emerging tool for plant science. Plasma Chemistry and Plasma Processing, 39(1), 21-34.
  • Baboo, R. A., 2018. Study on plasma chemistry for human health & waste management. International Journal of Research and Analytical Reviews. 5(1), 194-197.
  • Bali, N., Aggelopoulos, C. A., Skouras, E. D., Tsakiroglou, C. D. and Burganos, V. N. 2019. Modeling of a DBD plasma reactor for porous soil remediation. Chemical Engineering Journal, 373, 393-405.
  • Baysal, T. ve İçier, F., 2012. Gıda Mühendisliğinde Isıl Olmayan Teknolojiler. Nobel Akademik Yayıncılık, Ankara, 261-280p.
  • Bednarek, P. T. and Orłowska, R. 2019. Plant tissue culture environment as a switch-key of (epi) genetic changes. Plant Cell, Tissue and Organ Culture (PCTOC), 3, 1-13.
  • Bogaerts, A. and Neyts, E. C. 2018. Plasma technology: an emerging technology for energy storage. ACS Energy Letters, 3(4), 1013-1027.
  • Bormashenko, E., Shapira, Y., Grynyov, R., Whyman, G., Bormashenko, Y. and Drori, E. 2015. Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris). Journal of Experimental Botany, 66(13), 4013-4021.
  • Bourke, P., Ziuzina, D., Boehm, D., Cullen, P. J. and Keener, K. 2018. The potential of cold plasma for safe and sustainable food production. Trends in Biotechnology, 36(6), 615-626.
  • Bourke, P., Ziuzina, D., Han, L., Cullen, P. J. and Gilmore, B. F. 2017. Microbiological interactions with cold plasma. Journal of Applied Microbiology, 123(2), 308-324.
  • Bradu, C., Kutasi, K., Magureanu, M., Puač, N. and Zivkovic, S. (2020). Reactive nitrogen species in plasmaactivated water: generation, chemistry and application in agriculture. Journal of Physics D: Applied Physics, 53(22), 223001.
  • Brandenburg, R., Bogaerts, A., Bongers, W., Fridman, A., Fridman, G., Locke, B. R., Miller, V., Reuter, S., Schiorlin, M., Verreycken, T. and Ostrikov, K. 2019. White paper on the future of plasma science in environment, for gas conversion and agriculture. Plasma Processes and Polymers, 16(1), 1700238.
  • Chen, T.P., Liang, J. and Su, T.L. 2018. Plasma-activated water: antibacterial activity and artifacts. Environmental Science and Pollution Research, 25(27), 26699-26706.
  • Cheng, M., Zeng, G., Huang, D., Lai, C., Xu, P., Zhang, C. and Liu, Y. 2016. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chemical Engineering Journal, 284, 582-598.
  • Chiang, P.N., Tong, O.Y., Chiou, C.S., Lin, Y.A., Wang, M.K. and Liu, C.C. 2016. Reclamation of zinccontaminated soil using a dissolved organic carbon solution prepared using liquid fertilizer from food-waste composting. Journal of Hazardous Materials, 301, 100-105. Cotton seed germination improvement. Scientific reports, 8(1), 14372.
  • Coutinho, N.M., Silveira, M.R., Rocha, R.S., Moraes, J., Ferreira, M.V.S., Pimentel, T.C., Freitas, M.Q., Silva, M.C., Raices, R.S.L., Ranadheera, C.S., Borges, F.O., Mathias, S.P., Fernandes, F.A.N., Rodrigues, S. and Cruz A.G. 2018. Cold plasma processing of milk and dairy products. Trends in Food Science & Technology, 74, 56-68.
  • Çamoğlu, G., Demirel, K., Akçal, A., Genç, L., Su Stresinin Sofralık Domatesin Verimi ve Fizyolojik Özellikleri Üzerine Etkileri. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 33(1), 15-29.
  • Daeschlein, G. 2018. Antimicrobial activity of plasma. Comprehensive Clinical Plasma Medicine. Ed: Metelmann H.R., Woedtke T.V. and Weltmann K.D., Springer, Cham, pp: 113-125.
  • de Groot, G.J., Hundt, A., Murphy, A.B., Bange, M.P. and Mai-Prochnow, A. 2018. Cold plasma treatment for Degutyte-Fomins, L., Pauzaite, G., Zukiene, R., Mildaziene, V., Koga, K. and Shiratani, M. (2020). Relationship between cold plasma treatment-induced changes in radish seed germination and phytohormone balance. Japanese Journal of Applied Physics, 59, 1001.
  • del Río, L.A. 2015. ROS and RNS in plant physiology: an overview. Journal of Experimental Botany, 66(10), 2827-2837.
  • Dias, M.I., Sousa, M.J., Alves, R.C., and Ferreira, I.C. 2016. Exploring plant tissue culture to improve the production of phenolic compounds: A review. Industrial Crops and Products, 82, 9-22.
  • Dobrin, D., Magureanu, M., Mandache, N.B. and Ionita, M.D. 2015. The effect of non-thermal plasma treatment on wheat germination and early growth. Innovative Food Science & Emerging Technologies, 29, 255-260.
  • Elbehri, A. 2015. Climate change and food systems: global assessments and implications for food security and trade. Food and Agriculture Organization of the United Nations, Ed: Elbehri, A., FAO, Rome, Italy, pp: 1- 19.
  • El-Sherif, N.A. 2018. Impact of plant tissue culture on agricultural sustainability. Sustainability of Agricultural Environment in Egypt: Part II, Ed: Negm A.N., Abu-Hasim M., Springer, Cham, pp: 93-107.
  • Farsund, A.A., Daugbjerg, C. and Langhelle, O. 2015. Food security and trade: reconciling discourses in the food and agriculture organization and the world trade organization. Food Security, 7(2), 383-391.
  • Filatova, I., Azharonok, V., Lushkevich, V., Zhukovsky, A., Gadzhieva, G., Spasic, K., Zickovic, S., Puac, N., Lazovic, S., Malovic, G. and Petrovic, Z. L. 2013. Plasma seeds treatment as a promising technique for seed germination improvement. Proceeding of the 31st International Conference on Phenomena in Ionized Gases. 14-19 July 2013, Granada, Spain.
  • Filatova, I.I., Lyushkevich, V.A., Kalatskaja, J.N., Goncharik, S.V., Mildaziene, V. and Pauzaite, G. 2018. Influence of plasma and radio-wave treatment of seeds on the accumulation of some secondary metabolites in plants. 29 Summer School and International Symposium on the Physics of Ionized Gases: SPIG 2018 Contributed Papers & Abstracts of Invited Lectures, Topical Invited Lectures, Progress Reports and Workshop Lectures, Institut za nuklearne nauke VINCA, 28 Aug-1 Sep 2018, Belgrade, Serbia, 234p.
  • Gavahian, M. and Khaneghah, A. M. (2020). Cold plasma as a tool for the elimination of food contaminants: Recent advances and future trends. Critical reviews in food science and nutrition, 60(9), 1581-1592.
  • Graves, D.B., 2014. Low temperature plasma biomedicine: A tutorial review. Physics of Plasmas, 21(8), 080901.
  • Han, L., Ziuzina, D., Heslin, C., Boehm, D., Patange, A., Sango, D.M., Valdramidis V.P., Cullen P.J. and Bourke, P. 2016. Controlling microbial safety challenges of meat using high voltage atmospheric cold plasma. Frontiers in microbiology, 7, 977.
  • Han, Y., Cheng, J. H. and Sun, D. W. 2019. Activities and conformation changes of food enzymes induced by cold plasma: A review. Critical reviews in food science and nutrition, 59(5), 794-811.
  • Hati, S., Patel, M. and Yadav, D. 2018. Food bioprocessing by non-thermal plasma technology. Current Opinion in Food Science, 19, 85-91.
  • Henselová, M., Slováková, Ľ., Martinka, M., & Zahoranová, A. 2012. Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma. Biologia, 67(3), 490- 497.
  • Hoffman, C., Berganza, C. and Zhang, J., 2013. Cold Atmospheric Plasma: methods of production and application in dentistry and oncology. Medical Gas Research, 3(1), 21.
  • Iranbakhsh, A., Ghoranneviss, M., Ardebili, Z.O., Ardebili, N.O., Tackallou, S.H. and Nikmaram, H. 2017. Nonthermal plasma modified growth and physiology in Triticum aestivum via generated signaling molecules and UV radiation. Biologia plantarum, 61(4), 702-708.
  • Iranbakhsh, A., Ardebili, Z. O., Ardebili, N. O., Ghoranneviss, M. and Safari, N. 2018. Cold plasma relieved toxicity signs of nano zinc oxide in Capsicum annuum cayenne via modifying growth, differentiation, and physiology. Acta physiologiae plantarum, 40(8), 154.
  • Iranbakhsh, A., Ardebili, Z. O., Molaei, H., Ardebili, N. O. and Amini, M. 2020. Cold plasma up-regulated expressions of WRKY1 transcription factor and genes involved in biosynthesis of cannabinoids in Hemp (Cannabis sativa L.). Plasma Chemistry and Plasma Processing, 40(2), 527-537.
  • Jiang, J., Jiangang, L.I. and Yuanhua, D.O.N.G. 2018. Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato. Plasma Science and Technology, 20(4), 044007.
  • Jiayun, T., Rui, H.E., Xiaoli, Z., Ruoting, Z., Weiwen, C. and Size, Y. 2014. Effects of atmospheric pressure air plasma pretreatment on the seed germination and early growth of Andrographis paniculata. Plasma Science and Technology, 16(3), 260.
  • Judée, F., Simon, S., Bailly, C. and Dufour, T. 2018. Plasma-activation of tap water using DBD for agronomy applications: Identification and quantification of long lifetime chemical species and production/consumption mechanisms. Water research, 133, 47-59.
  • Kakati, B., Bujarbarua, S. and Bora, D. 2019. An eco-friendly, pollution-free process for seed germination and plant yield. AIP Conference Proceedings, 2091(1), 020021.
  • Kim, J.E., Lee, D.U. and Min, S.C. 2014. Microbial decontamination of red pepper powder by cold plasma. Food Microbiology, 38, 128-136.
  • Kim, J.E., Oh, Y.J., Won, M.Y., Lee, K.S. and Min, S.C. 2017. Microbial decontamination of onion powder using microwave-powered cold plasma treatments. Food Microbiology, 62, 112-123.
  • Kim, J.H. and Min, S.C. 2018. Moisture vaporization-combined helium dielectric barrier discharge-cold plasma treatment for microbial decontamination of onion flakes. Food Control, 84, 321-329.
  • Korachi, M., Özen, F., Aslan, N., Vannini, L., Guerzoni, M., Gottardi, D. and Ekinci, F., 2015. Biochemical changes to milk following treatment by a novel, cold atmospheric plasma system. International Dairy Journal, 42, 64-69.
  • Kordas, L., Pusz, W., Czapka, T. and Kacprzyk, R. 2015. The Effect of Low-Temperature Plasma on Fungus Colonization of Winter Wheat Grain and Seed Quality. Polish Journal of Environmental Studies, 24(1).
  • Kulkarni, P.S., Crespo, J.G. and Afonso, C.A. 2008. Dioxins sources and current remediation technologies—a review. Environment International, 34(1), 139-153.
  • Kusano, Y. 2014. Atmospheric pressure plasma processing for polymer adhesion: a review. The Journal of Adhesion, 90(9), 755-777.
  • Laroussi, M. and Leipold, F. 2004. Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. International Journal of Mass Spectrometry, 233(1-3), 81-86.
  • Li, R., Liu, Y., Mu, R., Cheng, W. and Ognier, S. 2017. Evaluation of pulsed corona discharge plasma for the treatment of petroleum-contaminated soil. Environmental Science and Pollution Research, 24(2), 1450-1458.
  • Liao, X., Xiang, Q., Cullen, P. J., Su, Y., Chen, S., Ye, X., ... & Ding, T. (2020). Plasma-activated water (PAW) and slightly acidic electrolyzed water (SAEW) as beef thawing media for enhancing microbiological safety. LWT, 117, 108649.
  • Ling, L.I., Jiangang, L.I., Hanliang, S.H.A.O. and Yuanhua, D.O.N.G. 2018. Effects of low-vacuum helium cold plasma treatment on seed germination, plant growth and yield of oilseed rape. Plasma Science and Technology, 20(9), 095502.
  • Los, A., Ziuzina, D., Boehm, D., Cullen, P.J. and Bourke, P. (2019). Investigation of mechanisms involved in germination enhancement of wheat (Triticum aestivum) by cold plasma: Effects on seed surface chemistry and characteristics. Plasma Processes and Polymers, 16(4), 1800148.
  • Lotfy, K., Al-Harbi, N.A. and El-Raheem, H.A. 2019. Cold atmospheric pressure nitrogen plasma jet for enhancement germination of wheat seeds. Plasma Chemistry and Plasma Processing, 39(4), 897-912.
  • Lou, J., Lu, N., Li, J., Wang, T. and Wu, Y. 2012. Remediation of chloramphenicol-contaminated soil by atmospheric pressure dielectric barrier discharge. Chemical Engineering Journal, 180, 99-105.
  • Lu, H., Patil, S., Keener, K. M., Cullen, P.J. and Bourke, P. 2014. Bacterial inactivation by high‐voltage atmospheric cold plasma: influence of process parameters and effects on cell leakage and DNA. Journal of applied microbiology, 116(4), 784-794.
  • Lu, N., Lou, J., Wang, C.H., Li, J. and Wu, Y. 2014. Evaluating the effects of silent discharge plasma on remediation of acid scarlet GR-contaminated soil. Water, Air, & Soil Pollution, 225(6), 1991.
  • Ma, R., Wang, G., Tian, Y., Wang, K., Zhang, J. and Fang, J. 2015. Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce. Journal of Hazardous Materials, 300, 643-651.
  • Mai-Prochnow, A., Murphy, A.B., McLean, K.M., Kong, M.G. and Ostrikov, K.K. 2014. Atmospheric pressure plasmas: infection control and bacterial responses. International Journal of Antimicrobial Agents, 43(6), 508-517.
  • Mandal, R., Singh, A. and Singh, A.P. 2018. Recent developments in cold plasma decontamination technology in the food industry. Trends in food science & technology, 80, 93-103.
  • Matra, K. (2016). Non-thermal plasma for germination enhancement of radish seeds. Procedia Computer Science, 86, 132-135.
  • Misra, N.N., Keener, K.M., Bourke, P., Mosnier, J.P. and Cullen, P.J. 2014. In-package atmospheric pressure cold plasma treatment of cherry tomatoes. Journal of Bioscience And Bioengineering, 118(2), 177-182.
  • Misra, N.N., Schlüter, O. and Cullen, P.J. 2016. Cold plasma in food and agriculture: Fundamentals and applications. Academic Press, Elsevier, London, United Kingdom, 361p.
  • Mitra, A., Li, Y.F., Klämpfl, T.G., Shimizu, T., Jeon, J., Morfill, G.E. and Zimmermann, J.L. 2014. Inactivation of surface-borne microorganisms and increased germination of seed specimen by cold atmospheric plasma. Food and Bioprocess Technology, 7(3), 645-653.
  • Moghanloo, M., Iranbakhsh, A., Ebadi, M., Satari, T.N. and Ardebili, Z.O. 2019. Seed priming with cold plasma and supplementation of culture medium with silicon nanoparticle modified growth, physiology, and anatomy in Astragalus fridae as an endangered species. Acta Physiologiae Plantarum, 41(4), 54.
  • Nehra, V., Kumar, A. and Dwivedi, H.K. 2008. Atmospheric non-thermal plasma sources. International Journal of Engineering, 2(1), 53-68.
  • Niemira B.A. and Gutsol A. 2010. Nonthermal plasma as a novel food processing technology: Nonthermal Processing Technologies for Food, Ed: Zhang, H.Q., Barbosa-Canovas, G.V., Balasubramaniam, V.M., Dunne, P.C., Farkas, D., Yuan, J., Blackwell Publishing IFT Press, West Sussex, United Kingdom, pp: 271– 88.
  • Niemira, B.A. 2012. Cold plasma decontamination of foods. Annual review of food science and technology, 3, 125-142.
  • Nishime, T.M.C., Borges, A.C., Koga-Ito, C.Y., Machida, M., Hein, L.R.O. and Kostov, K.G. 2017. Non-thermal atmospheric pressure plasma jet applied to inactivation of different microorganisms. Surface and Coatings Technology, 312, 19-24.
  • Nishioka, T., Takai, Y., Kawaradani, M., Okada, K., Tanimoto, H., Misawa, T. and Kusakari, S. 2014. Seed disinfection effect of atmospheric pressure plasma and low pressure plasma on Rhizoctonia solani. Biocontrol Science, 19(2), 99-102.
  • Ohta, T., 2016. Plasma in Agriculture: Cold Plasma in Food and Agriculture: Fundamentals and Applications, Ed: Misra, N.N., Schlüter, O.K., Cullen, P.J., Academic Press, Elsevier, London, United Kingdom, pp: 205- 218.
  • Padureanu, S., Stoleru, V., Patras, A., Burlica, R., Dirlau, D., Astanei, D. and Beniuga, O. 2018. Effect of Non-Thermal Activated Water on Lactuca Sativa L. Germination Dynamic. 2018 International Conference and Exposition on Electrical And Power Engineering (EPE), IEEE, 18-19 Oct. 2018, Iasi, Romania, p: 0889- 0892.
  • Pankaj, S.K. and Thomas, S. 2016. Cold plasma applications in food packaging: Cold Plasma in Food and Agriculture, Ed: Misra, N.N., Schlüter, O.K., Cullen, P.J., Academic Press, Elsevier, London, United Kingdom, pp: 293-307.
  • Pankaj, S.K. and Keener, K.M. 2017. Cold plasma: Background, applications and current trends. Current Opinion in Food Science, 16, 49-52.
  • Pankaj, S.K. and Keener, K.M. 2018. Cold plasma processing of fruit juices: Fruit juices, Ed: Rajauria G., Tiwari B.K., Academic Press, Elsevier, Dublin, Ireland, pp: 529-537.
  • Pankaj, S.K., Wan, Z., and Keener, K.M. 2018. Effects of cold plasma on food quality: A review. Foods,7(1), 4.
  • Park, Y., Oh, K.S., Oh, J., Seok, D C., Kim, S.B., Yoo, S.J. and Lee, M.J. 2018. The biological effects of surface dielectric barrier discharge on seed germination and plant growth with barley. Plasma Processes and Polymers, 15(2), 1600056.
  • Peethambaran, B., Han, J., Kermalli, K., Jiaxing, J., Fridman, G., Balsamo, R., Fridman, A.A, and Miller, V. 2015. Nonthermal plasma reduces water consumption while accelerating arabidopsis thaliana growth and fecundity. Plasma Medicine, 5(2-4), 87-98.
  • Petitpas, G., Rollier, J.D., Darmon, A., Gonzalez-Aguilar, J., Metkemeijer, R. and Fulcheri, L. 2007. A comparative study of non-thermal plasma assisted reforming technologies. International Journal of Hydrogen Energy, 32(14), 2848-2867.
  • Porto, C. L., Ziuzina, D., Los, A., Boehm, D., Palumbo, F., Favia, P., ... & Cullen, P. J. (2018). Plasma activated water and airborne ultrasound treatments for enhanced germination and growth of soybean. Innovative Food Science & Emerging Technologies, 49, 13-19.
  • Puač, N., Gherardi, M. and Shiratani, M. 2018. Plasma agriculture: A rapidly emerging field. Plasma Processes and Polymers, 15, 1700174.
  • Qi, Z.H., Yang, L., Xia, Y., Ding, Z.F., Niu, J. H., Liu, D.P., Zhao, Y., Ji, L.F., Song, Y. and Lin, X.S., 2019. Removal of dimethyl phthalate in water by non-thermal air plasma treatment. Environmental Science. Water Research & Technology, 5(5), 920-930.
  • Reddy, K.R.N., Abbas, H.K., Abel, C.A., Shier, W.T., Oliveira, C.A.F.D. and Raghavender, C.R. 2009. Mycotoxin contamination of commercially important agricultural commodities. Toxin reviews, 28(2-3), 154- 168.
  • Redolfi, M., Makhloufi, C., Ognier, S. and Cavadias, S. 2010. Oxidation of kerosene components in a soil matrix by a dielectric barrier discharge reactor. Process Safety and Environmental Protection, 88(3), 207-212.
  • ReynaMartinez, R., Cespedes, R.N., Alonso, M.I. and Acosta, Y.R. 2018. Use of Cold Plasma Technology in Biomaterials and Their Potential Utilization in Controlled Administration of Active Substances. Journal Material Science, 4(5). 555649.
  • Safari, N., Iranbakhsh, A. and Ardebili, Z.O. 2017. Non-thermal plasma modified growth and differentiation process of Capsicum annuum PP805 Godiva in in vitro conditions. Plasma Science and Technology, 19(5), 055501.
  • Sarangapani, C., Patange, A., Bourke, P., Keener, K. and Cullen, P.J. 2018. Recent advances in the application of cold plasma technology in foods. Annual Review of Food Science and Technology, 9, 609-629.
  • Schnabel, U., Niquet, R., Krohmann, U., Winter, J., Schlüter, O., Weltmann, K.D. and Ehlbeck, J. 2012. Decontamination of microbiologically contaminated specimen by direct and indirect plasma treatment. Plasma Processes and Polymers, 9(6), 569-575.
  • Será, B., Stranák, V., Serý, M., Tichý, M. and Spatenka, P. 2008. Germination of Chenopodium album in response to microwave plasma treatment. Plasma Science and Technology, 10(4), 506.
  • Será, B., Spatenka, P., Sery, M., Vrchotová, N. and Hruskova, I. 2010. Influence of plasma treatment on wheat and oat germination and early growth. IEEE Transactions on Plasma Science, 38(10), 2963-2968.
  • Será B. and Serý M. 2018. Non-thermal plasma treatment as a new biotechnology in relation to seeds, dry fruits, and grains. Plasma Science and Technology, 20(4), 044012.
  • Será, B., Zahoranová, A., Bujdáková, H. and Šerý, M. 2019. Disinfection from pine seeds contaminated with Fusarium circinatum Nirenberg & O’Donnell using non-thermal plasma treatment. Romanian Reports in Physics, 71, 701.
  • Shen, J., Tian, Y., Li, Y., Ma, R., Zhang, Q., Zhang, J. and Fang, J. 2016. Bactericidal Effects against S. aureus and Physicochemical Properties of Plasma Activated Water stored at different temperatures. Scientific Reports, 6, 28505.
  • Šimončicová, J., Kaliňáková, B., Kováčik, D., Medvecká, V., Lakatoš, B., Kryštofová, S., Hoppanová, l., Palušková, V., Hudecová, D., Durina, P. and Zahoranová, A. 2018. Cold plasma treatment triggers antioxidative defense system and induces changes in hyphal surface and subcellular structures of Aspergillus flavus. Applied Microbiology and Biotechnology, 102(15), 6647-6658Singh, C. R., 2018, Review on problems and its remedy in plant tissue culture, Asian Journal of Biological Sciences, 11, 165-172 pp.
  • Singh, H., Jassal, R.K., Kang, J.S., Sandhu, S.S., Kang, H. and Grewal, K. 2015. Seed priming techniques in field crops-A review. Agricultural Reviews, 36(4).
  • Singh, S., Chandra, R., Tripathi, S., Rahman, H., Tripathi, P., Jain, A. and Gupta, P. 2014. The bright future of dentistry with cold plasma—review. J Dent Med Sci, 13, 6-13.
  • Sivachandiran, L. and Khacef, A. 2017. Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC Advances, 7(4), 1822-1832.
  • Štěpánová, V., Slavíček, P., Kelar, J., Prášil, J., Smékal, M., Stupavská, M., Jurmanova, J and Černák, M. 2018. Atmospheric pressure plasma treatment of agricultural seeds of cucumber (Cucumis sativus L.) and pepper (Capsicum annuum L.) with effect on reduction of diseases and germination improvement. Plasma Processes and Polymers, 15(2), 1700076.
  • Stolárik, T., Henselová, M., Martinka, M., Novák, O., Zahoranová, A. and Černák, M. 2015. Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.). Plasma Chemistry and Plasma Processing, 35(4), 659-676.
  • Stryczewska, H.D., Ebihara, K., Takayama, M., Gyoutoku, Y. and Tachibana, M. 2005. Non‐Thermal Plasma‐ Based Technology for Soil Treatment. Plasma Processes and Polymers, 2(3), 238-245.
  • Stryczewska, H.D., Pawłat, J. and Ebihara, K. 2013. Non-thermal plasma aided soil decontamination. Journal of Advanced Oxidation Technologies, 16(1), 23-30.
  • Thirumdas, R. 2018. Exploitation of cold plasma technology for enhancement of seed germination. Agri. Res. Tech, 13, 1-4.
  • Thirumdas, R., Kothakota, A., Annapure, U., Siliveru, K., Blundell, R., Gatt, R. and Valdramidis, V.P. 2018. Plasma activated water (PAW): chemistry, physico-chemical properties, applications in food and agriculture. Trends in Food Science & Technology, 77, 21-31.
  • Thomas-Popo, E., Mendonça, A., Misra, N.N., Little, A., Wan, Z., Moutiq, R., Coleman, S. and Keener, K. 2019. Inactivation of Shiga-toxin-producing Escherichia coli, Salmonella enterica and natural microflora on tempered wheat grains by atmospheric cold plasma. Food Control, 104, 231-239.
  • Tolouie, H., Mohammadifar, M.A., Ghomi, H. and Hashemi, M. 2018. Cold atmospheric plasma manipulation of proteins in food systems. Critical Reviews in Food Science And Nutrition, 58(15), 2583-2597.
  • Uhm, H.S. 2015. Generation of various radicals in nitrogen plasma and their behavior in media. Physics of Plasmas, 22(12), 123506.
  • Volkov, A.G., Xu, K.G. and Kolobov, V.I. 2017. Cold plasma interactions with plants: Morphing and movements of Venus flytrap and Mimosa pudica induced by argon plasma jet. Bioelectrochemistry, 118, 100-105.
  • von Woedtke T., Schmidt A., Bekeschus S., and Wende K., Introduction to plasma medicine: Comprehensive Clinical Plasma Medicine, Ed: Metelmann, H.M., von Woedtke, T., Weltmann, K.D., Springer, Berlin, Germany, pp: 3-21.
  • Wang, T., Qu, G., Li, J. and Liang, D. 2014. Remediation of p-nitrophenol and pentachlorophenol mixtures contaminated soil using pulsed corona discharge plasma. Separation and Purification Technology, 122, 17- 23.
  • Wang, T., Ren, J., Qu, G., Liang, D. and Hu, S. 2016. Glyphosate contaminated soil remediation by atmospheric pressure dielectric barrier discharge plasma and its residual toxicity evaluation. Journal of Hazardous Materials, 320, 539-546.
  • Waskow, A., Betschart, J., Butscher, D., Oberbossel, G., Klöti, D., Büttner-Mainik, A., Adamcik, J., Rohr., P.R. and Schuppler, M. 2018. Characterization of Efficiency and Mechanisms of Cold Atmospheric Pressure Plasma Decontamination of Seeds for Sprout Production. Frontiers in Microbiology, 9, 3164.
  • Whitehead, J.C. 2016. The Chemistry of Cold Plasma: Cold Plasma in Food and Agriculture: Fundamentals and Applications, Ed: Misra, N.N., Schlüter, O.K., Cullen, P.J., Academic Press, Elsevier, London, United Kingdom, pp: 53-78.
  • Xiang, Q., Liu, X., Liu, S., Ma, Y., Xu, C. and Bai, Y. 2019. Effect of plasma-activated water on microbial quality and physicochemical characteristics of mung bean sprouts. Innovative Food Science & Emerging Technologies, 52, 49-56.
  • Yodpitak, S., Mahatheeranont, S., Boonyawan, D., Sookwong, P., Roytrakul, S. and Norkaew, O. 2019. Cold plasma treatment to improve germination and enhance the bioactive phytochemical content of germinated brown rice. Food chemistry, 289, 328-339.
  • Yüksel Ç.Y. ve Karagözlü, N. 2017. Soğuk Atmosferik Plazma Teknolojisi ve Gıdalarda Kullanımı. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 14(2), 81-86.
  • Zahoranová, A., Henselová, M., Hudecová, D., Kaliňáková, B., Kováčik, D., Medvecká, V. and Černák, M. 2016. Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chemistry and Plasma Processing, 36(2), 397-414.
  • Zhan, J., Liu, Y., Cheng, W., Zhang, A., Li, R., Li, X., Ognier, S., Cai, S., Yhang, C. and Liu, J. 2018. Remediation of soil contaminated by fluorene using needle-plate pulsed corona discharge plasma. Chemical Engineering Journal, 334, 2124-2133.
  • Zhang, H., Ma, D., Qiu, R., Tang, Y. and Du, C. 2017a. Non-thermal plasma technology for organic contaminated soil remediation: A review. Chemical Engineering Journal, 313, 157-170.
  • Zhang, S., Rousseau, A. and Dufour, T. 2017b. Promoting lentil germination and stem growth by plasma activated tap water, demineralized water and liquid fertilizer. RSC Advances, 7(50), 31244-31251.
  • Zheng, Y., Wu, S., Dang, J., Wang, S., Liu, Z., Fang, J., Han, P. and Zhang, J. 2019. Reduction of phoxim pesticide residues from grapes by atmospheric pressure non-thermal air plasma activated water. Journal of Hazardous Materials, 377, 98-105.
  • Ziuzina, D., Patil, S., Cullen, P.J., Keener, K.M. and Bourke, P. 2014. Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiology, 42, 109-11.