Meeting Local Energy Requirement from Wind Energy in Areas without Grid: Northern Mesopotamia

Bu çalışmada, Güneydoğu Anadolu bölgesinde (Kuzey Mezopotamya) şebeke yoksunluğu sebebiyle üretimleri aksayan veya sınırlı kalan tarım tesislerinin elektrik enerji ihtiyaçlarının lokal olarak küçük rüzgar türbinleri ile karşılanabilirliği araştırılmıştır. Bölge olarak, Türkiye'nin en büyük kalkınma projesi olan Güneydoğu Anadolu Projesi (GAP) kapsamında olan Dicle ve Fırat nehirlerinin bulunduğu topografya ele alınmıştır. Toplam dokuz şehirdeki 24 meteoroloji istasyonuna ait veriler, Yenilenebilir Enerji Genel Müdürlüğüne ait Rüzgâr Enerjisi Potansiyel Atlası ve uydu görüntüleri eş zamanlı olarak incelenmiştir. Elde edilen bilgiler doğrultusunda öncelikle bölgenin rüzgâr karakteristikleri belirlenmiştir. Çalışmada ayrıca rüzgâr karakteristikleri dikkate alınarak temsili olarak seçilmiş küçük rüzgâr türbinlerinden muhtemel elde edilecek güç ve enerji değerleri ortaya konulmuştur. Son olarak da söz konusu rüzgar türbinlerinin kapasite faktörleri karşılaştırılmış ve ekonomik olarak kurulabilirlikleri irdelenmiştir.

Meeting Local Energy Requirement from Wind Energy in Areas without Grid: Northern Mesopotamia

In this study, it has been investigated whether the electrical energy needs of the agricultural plant, which have minimized their production range due to network deprivation in the Southeastern Anatolia Region (Northern Mesopotamia), can be met locally with small wind turbines to increase their product range. Turkey's largest development project in the Southeastern Anatolia Project (GAP), the topography where Tigris and Euphrates Rivers exist was investigated. Data from 24 meteorology stations in nine cities and their speed and direction data, Wind Energy Potential Atlas of the Renewable Energy General Directorate, and satellite images were analyzed simultaneously. In line with the information obtained, the wind characteristics and energy potential of the region have been determined. Also, considering the wind characteristics presence, possible power, and energy values from the small wind turbines that have been chosen as representative are presented. Finally, the capacity factors and the costs of these wind turbines have been compared, and their economic and technical installability has been examined.

___

  • Anonymous, 2003. Roughness Classes and Roughness Length Table. Danish Wind Industry Association. http://xn--drmstrre-64ad.dk/wp-content/wind/miller/windpower%20web/en/stat/ unitsw.htm#roughness [accessed 24 April 2020]
  • Anonymous, 2005a. Law on the use of renewable energy sources for electricity generation. Law No. 5346 (10.05.2005), official gazette of Presidenteal of Republic of Turkey: 17.05.2005.
  • Anonymous, 2005b. Communiqué on the electrical energy support used in agricultural irrigation (communiqué no: 2005/22) https://www.resmigazete.gov.tr/eskiler/2005/05/20050504-10.htm [accessed 14 May 2020]
  • Anonymous, 2006. Wind energy integration in the urban environment WINEUR. Techno Economic Report 2006. https://ec.europa.eu/energy/intelligent/projects/sites/iee-projects/files/projects/ documents/wineur_techno_economic_report.pdf [accessed 24 April 2020]
  • Anonymous, 2007. Turkey Wind Energy Potential Atlas. Republic of Turkey General Directorate of Renewable Energy; 2007. http://www.yegm.gov.tr/YEKrepa/REPA-duyuru_01.html [accessed 18 January 2020]
  • Anonymous, 2016a. Horizontal Axis Wind Turbine. Soyut Wind; 2016. http://www.soyutwind.com/soyutwind/akulu6.php [accessed: 15 June 2016]
  • Anonymous, 2016b. Vertical Axis Wind Turbine. Hopeful Energy; 2016. http://www.hopefulenergy.com [accessed 15 June 2016]
  • Anonymous, 2017. Communiqué on the support of agricultural investments within the scope of rural development supports (communiqué no: 2017/22) official gazette of Presidenteal of Republic of Turkey: 30179.
  • Anonymous, 2019. Communiqué on the support of agricultural investments within the scope of the 13th stage of rural development supports (communiqué no: 2019/30) official gazette of Presidenteal of Republic of Turkey: 30850.
  • Anonymous, 2020a. Global Wind Energy Council (GWEC), Global wind energy report 2019. Global Wind Energy Concuil https://gwec.net/global-wind-report-2019/2020. [accessed 10 April 2020]
  • Anonymous, 2020b. Türkiye rüzgâr enerjisi istatistik raporu- Ocak 2020. Türkiye Rüzgar Enerjisi Birliği. https://www.tureb.com.tr/turebsayfa/duyurular/turkiye-ruzgar-enerjisi-istatistik-raporu-ocak-2020. [accessed 24 April 2020]
  • Anonymous, 2020c. Agriculture And Rural Development Support Institution. http://tkdk.gov.tr/ [accessed 28 May 2020]
  • Anonymous, 2020d. Karacadağ Development Agency; 2020, https://www.karacadag.gov.tr/destekler/3/teknikdestek-programi/ [accessed 14 May 2020]
  • Anonymous, 2020e. İpekyolu Development Agency; 2020. https://www.ika.org.tr/2020-Yili-Mali-DestekProgramlari-icerik-389.html [accessed: 14 May 2020]
  • Anonymous, 2020f. Central Bank of the Turkish Republic. https://www.tcmb.gov.tr/ [accessed 28 February 2020]
  • Anonymous, 2020g. Republic of Turkey Energy Market Regulatory Authority. https://www.epdk.org.tr/Detay/Icerik/3-0-1/tarifeler [accessed: 15 May 2020]
  • Anonymous, 2020h. Central Bank of the Turkish Republic. https://www.tcmb.gov.tr /wps/wcm/connect/tr/tcmb+tr/main+page+site+area/bugun [accessed15 May 2020]
  • Bagiorgas, H. S., 2007. Assimakopoulos M N, Theoharopoulos D, Matthopoulos D, Mihalakakou G K, Electricity generation using wind energy conversion systems in the area of Western Greece Energy Conversion and Management; 48:1640-1655.
  • Bektaş, A., 2013. Binalarda rüzgâr enerjisi kullanımının farklı bölgeler açısından değerlendirilmesine yönelik bir çalışma: Toki Tarımköy Projesi örneği, İstanbul Teknik Üniversitesi, Mimarlık Anabilim Dalı, Çevre Kontrolü ve Yapı Teknolojisi Programı. https://polen.itu.edu.tr/bitstream/11527/8151/1/13952.pdf–%20 [accessed 23 December 2015]
  • Biçen, T. ve Vardar, A. 2020. Regional Energy Production with Small Wind Turbines with Concentrator Systems in Nort-West Turkey. Bursa Uludag Üniv. Ziraat Fak. Derg., 34(1), s. 167-184.
  • Bölükbaş, E., Biçen, T., Vardar, A., 2020. Technical and Economic Analysis of the Use of Wind Energy for Water Extraction: Karacabey Example. Bursa Uludag Üniv. Ziraat Fak. Derg., 34(2), s. 287-301.
  • Dabbaoğlu, H., Yumuşak, S., Uyar, E., 2014. Vergi Usul Kanunu ve Türkiye Muhasebe Standartlarına Göre Amortisman Konusunun İncelenmesi ve Örnek Uygulamalar1. Yönetim ve Ekonomi Araştırmaları Dergisi 23. doi: http://dx.doi.org/10.11611/JMER407.
  • Doğan, M., 2013. Türkiye sanayileşme sürecine genel bir bakış. Marmara Coğrafya Dergisi; 28:211-231. ISSN:1303-2429, e-ISSN 2147-7825.
  • Elibüyük, U., Yakur, A. K., Üçgül, İ., 2016. Süleyman Demirel Üniversitesi Rüzgâr Enerjisi Santrali Projesi Süleyman Demirel Üniversitesi YEKARUM e-Dergisi 2016. (Journal of YEKARUM) 3(2), e-ISNN: 1309- 9388.
  • Fernandes, N., 2020. Economic effects of coronavirus outbreak (COVID-19) on the world economy. University of Navarra, IESE Business School. doi: http://dx.doi.org/10.2139/ssrn.3557504
  • Hayli, S., 2001. Rüzgâr enerjisinin önemi, Dünya’da ve Türkiye’deki durumu. Fırat Üniversitesi, Fen-Edebiyat Fakültesi, Coğrafya Bölümü. Fırat Üniversitesi Sosyal Bilimler Dergisi; 11(1):1-26.
  • Jhoinson, G. L., 2006. Wind Energy Systems, Manhattan, KS, 55; 2006 October 10.
  • Kapluhan, E., 2017. Rüzgar Enerjisi Uygulamalarına Bir Örnek: Sincik (Adıyaman) Rüzgar Enerji Santrali. doi: 10.17719/jisr.2017.1663.
  • Mann, C. L., 2020. Real and financial lenses to assess the economic consequences of COVID-19. In Baldwin R. and di Mauro B. W.(eds.) Economics in the Time of COVID-19; 81-85; CEPR Press, London, UK.
  • McKibbin, W., Fernando, R., 2020. The Global Macroeconomic Impacts of COVID-19: Seven Scenarios. Australian National University Crawford School of Public Policy. http://dx.doi.org/10.2139/ssrn.3547729.
  • Özşahin, E., Kaymaz, Ç. K., 2013. Rüzgâr enerji santrallerinin (RES) yapımı yer seçimi üzerine bir CBS analizi: Hatay örneği TUBAV Bilim Dergisi; 6 (2):1-18.
  • Shepherd, D.G., 1990. Historical development of the windmill; United States: 1990. doi: https://www.osti.gov/servlets/purl/6342767
  • Spitzmueller, C., Krishnamoorti, R., Flin, R., Datta, A., 2020. The Energy Workforce and COVID-19: DataDriven Policy Recommendations. UH Energy White Paper Series: No. 02.2020;16-17. https://uh.edu/uhenergy/research/white-papers/white-papers-files/krishnamoorti-energy-outlook-covid-19.pdf [accessed 4 April 2020]
  • Yağcı, E., 2013. Wind speed extrapolation methods and their effect on energy generation estimation, 2013 International Conference on Renewable Energy Research and Applications (ICRERA); 2013. doi: 10.1109/ICRERA.2013.6749793.