Zoonotik Bulaşı olan İki Sarkoptik Uyuzlu Köpeğin Sağaltımında Heterojen Deri Mikrobiyota Transplantasyonu

Bu vaka raporunda yazarlar, iki heterolog konakçı arasında (görünüşe göre sağlıklı donörden diğer uyuzlu hasta köpeklere ayrı ayrı) zenginleştirilmemiş (ancak nemlendirilen ve probiyotik uygulanan) deri mikrobiyota topluluklarının transferinin (hDmT) uygulanabilirliğini inceledi. Uyuz tanısı konulan ve yoğun kaşıntısı bulunan sahipli (aynı hasta sahibine ait olan), melez ırkı 2 köpek çalışmaya dahil edildi. Nivea t bölgesi burun bantları, başka donör bir köpeğin görünüşte sağlıklı toplamda 3 farklı integümenter dokusuna yapıştırıldı ve 10-12 dakika kurumaya bırakıldı. Akabinde bantlar alınarak her 3 bant izotonik ile irrige edilen hasta deri dokusuna (her iki uyuzlu köpekte ayrı ayrı laterolateral bölgelere) yapıştırıldı en az 12-15 dakika yapışmasına izin verildi. Sonunda 3 bantta uzaklaştırıldı. Vas prurtius skorları, hem vaka I hem de II'de, 0. günden (hDmT başlangıç günü) 21. güne kadar önemli ölçüde azaldı. hDmT’den önce [-14. –(0.) günler] Vas kaşıntı skoru vaka I’ de 8-10, vaka II’ de 7-9 arasında değişmekteydi. hDmT’den önce, deri kazıntıları -14 ila 0. günlerde pozitif iken, hDmT’nin 2. gününden sonra, her iki köpekte çalışmanın sonuna kadar negatif elde edildi. Zenginleştirilmemiş deri mikrobiyotasının sağlıklı bir donörden hasta uyuzlu köpeklere aktarılmasının, deri mikroekolojisinin manipülasyonu ile klinik ve parazitolojik iyileşmeyi hızlandırmış olması gerektiği gibi bir ön yargıya varmak yanlış olmayacaktır.

Heterologue Skin Microbiota Transplantation for Treatment of Sarcoptic Manges in Two Dogs with Zoonotic Transmission

In the present case report, the authors inspected the feasibility of transferring unenriched (however moistured and pre-biotic treated) skin microbiota communities between two heterologous hosts, namely heterologue skin microbiota transplantation (hSmT), [from apparently healthy donor to other relevant and diseased dogs, with scabies, separately]. Two cross-bred, client-owned dogs (belonging to the same owners) with a diagnosis of scabies and intense pruritus were enrolled. Nivea Clear Up Strips were attached in a total of 3 various apparently healthy integumentary tissue of another donor dog and allowed to dry for 10-12 minutes. This was followed by peeling off, all 3 strips were then transferred to diseased skin tissue (laterolateral area in 2 dogs with scabies, separately) which were also irrigated with isotonic and allowed to attach for at least 12-15 minutes. Finally, all 3 strips were removed. Both in case I and II, Vas pruritus scores were decreased significantly beginning on day 0 (initial hSmT day) to days 21. Vas pruritus score ranged between 8-10 and 7-9, in case I and II, respectively, prior to hSmT [days -14 to day 0]. Prior to hSmT all skin scrape positivity were deemed available on days -14 to 0, whereas after day 2 of hSmT, all 2 dogs gave negative skin scraping results till the end of the study. It should not be unwise to draw preliminary conclusion that transfer of unenriched skin microbiota from a healthy donor to the diseased dogs with scabies, should have helped hastening clinical and parasitological recovery by manipulation of cutaneous microenvironment

___

  • 1. Wanke I, Steffen H, Christ C, Krismer B, Götz F, Peschel A, Schittek B. Skin commensals amplify the innate immune response to pathogens by activation of distinct signaling pathways. Journal of Investigative Dermatology 2011; 131(2): 382-390. Doi: https://doi.org/10.1038/jid.2010.328.
  • 2. Zeeuwen PL, Boekhorst J, van den Bogaard EH, de Koning HD, van de Kerkhof P, Saulnier DM, Timmerman HM. Microbiome dynamics of human epidermis following skin barrier disruption. Genome Biology 2012; 13(11): 1-18. Doi: https://doi.org/10.1186/gb-2012-13-11-r101.
  • 3. Swe PM, Zakrzewski M, Kelly A, Krause L, Fischer K. Scabies mites alter the skin microbiome and promote growth of opportunistic pathogens in a porcine model. PLOS Neglected Tropical Diseases 2014; 8: e2897. Doi: https://doi.org/10.1371/journal.pntd.0002897.
  • 4. Walton SF, Holt DC, Currie BJ, Kemp DJ. Scabies: new future for a neglected disease. Advances in Parasitology 2004; 57(57): 309-76.
  • 5. Hengge UR, Currie BJ, Jäger G, Lupi O, Schwartz RA. Scabies: a ubiquitous neglected skin disease. The Lancet Infectious Diseases 2006; 6(12): 769-779.
  • 6. Almberg ES, Cross PC, Dobson AP, Smith DW, Hudson PJ. Parasite invasion following host reintroduction: a case study of Yellowstone's wolves. Philosophical Transactions of the Royal Society B: Biological Sciences 2012; 367(1604): 2840-2851. Doi: https://doi.org/10.1098/rstb.2011.0369.
  • 7. Fraser TA, Charleston M, Martin A, Polkinghorne A, Carver S. The emergence of sarcoptic mange in Australian wildlife: an unresolved debate. Parasites & Vectors 2016; 9(1): 1-11.
  • 8. Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, Segre JA. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Research 2012; 22(5): 850-859. Doi: 10.1101/gr.131029.111.
  • 9. Rodrigues Hoffmann A, Patterson AP, Diesel A, Lawhon SD, Ly HJ, Stephenson CE, Suchodolski JS. The skin microbiome in healthy and allergic dogs. PloS One, 2014; 9(1): e83197. Doi: https://doi.org/10.1371/journal.pone.0083197.
  • 10. Williams MR, Gallo RL. The role of the skin microbiome in atopic dermatitis. Current Allergy AND Asthma Reports 2015; 15(11): 1-10. Doi: https://doi.org/10.1007/s11882-015-0567-4.
  • 11. Bradley CW, Morris DO, Rankin SC, Cain CL, Misic AM, Houser T, Grice EA. Longitudinal evaluation of the skin microbiome and association with microenvironment and treatment in canine atopic dermatitis. Journal of Investigative Dermatology 2016; 136(6): 1182-1190. Doi: https://doi.org/10.1016/j.jid.2016.01.023.
  • 12. Callewaert C, Knödlseder N, Karoglan A, Güell M, Paetzold B. Skin microbiome transplantation and manipulation: Current state of the art. Computational and Structural Biotechnology Journal 2021; 19: 624-631. Doi: https://doi.org/10.1016/j.csbj.2021.01.001.
  • 13. Whitehall J, Kuzulugil D, Sheldrick K, Wood A. Burden of paediatric pyoderma and scabies in N orth W est Q ueensland. Journal of Paediatrics and Child Health 2013; 49(2): 141-143. Doi: https://doi.org/10.1111/jpc.12095.
  • 14. McCarthy JS, Kemp DJ, Walton SF, Currie BJ. Scabies: more than just an irritation. Postgraduate Medical Journal 2004; 80(945): 382-387.
  • 15. Wolina U, Hipler UC, Nenoff P. Trichobacteriosis, erythrasma and pitted keratolysis–the spectrum of non-diphtheroid Corynebacteria. Romanian Journal of Clinical and Experimental Dermatology, 2017; 4(2).
  • 16. Swe PM, Fischer K. A scabies mite serpin interferes with complement-mediated neutrophil functions and promotes staphylococcal growth. PLoS Neglected Tropical Diseases 2014; 8(6): e2928. Doi: https://doi.org/10.1371/journal.pntd.0002928.
  • 17. Mika A, Reynolds SL, Pickering D, McMillan D, Sriprakash KS, Kemp DJ, Fischer K. Complement inhibitors from scabies mites promote streptococcal growth–a novel mechanism in infected epidermis?. PLoS neglected Tropical Diseases 2012; 6(7): e1563. Doi: https://doi.org/10.1371/journal.pntd.0001563.
  • 18. Bergström FC, Reynolds S, Johnstone M, Pike RN, Buckle AM, Kemp DJ, Blom AM. Scabies mite inactivated serine protease paralogs inhibit the human complement system. The Journal of Immunology 2009; 182(12): 7809-7817. Doi: https://doi.org/10.4049/jimmunol.0804205.
  • 19. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, Segre JA. Topographical and temporal diversity of the human skin microbiome. Science 2009; 324(5931): 1190-1192. Doi: 10.1126/science.117170.
  • 20. Myles IA, Earland NJ, Anderson ED, Moore IN, Kieh MD, Williams KW, Datta SK. First-in-human topical microbiome transplantation with Roseomonas mucosa for atopic dermatitis. JCI Insight 2018; 3(9). Doi: 10.1172/jci.insight.120608.
  • 21. Paetzold B, Willis JR, Pereira de Lima J, Knödlseder N, Brüggemann H, Quist S. R, Güell M. Skin microbiome modulation induced by probiotic solutions. Microbiome 2019; 7(1), 1-9. Doi: https://doi.org/10.1186/s40168-019-0709-3.
  • 22. Ito Y, Amagai M. Controlling skin microbiome as a new bacteriotherapy for inflammatory skin diseases. Inflammation and Regeneration 2022; 42(1): 1-13. Doi: https://doi.org/10.1186/s41232-022-00212-y.
  • 23. Perin B, Addetia A, Qin X. Transfer of skin microbiota between two dissimilar autologous microenvironments: A pilot study. PLoS One 2019; 14(12): e0226857. Doi: https://doi.org/10.1371/journal.pone.0226857.