Toz metalurijisi ile üretilen hegzagonal bor nitrür takviyeli AZ91 magnezyum kompozitlerin tribolojik özelliklerinin incelenmesi

Bu çalışmada, AZ91 magnezyum alaşımı ve AZ91 alaşımına ağırlıkça %10 hBN (hegzagonal bor nitrür) nanoparçacıkları takviye edilerek homojen kompozit malzeme karışımları yapıldı. Hazırlanan tozların soğuk presleme yöntemiyle 400 MPa basınç ile preslenmesi ve 590 C° sıcaklıkta argon atmosferinde sinterlemeleri gerçekleştirildi. Hazırlanan numunelerin mikroyapıları taramalı elektron mikroskobu (SEM) ve enerji dağılımlı X-ışınları (EDX) analizleri ile incelenmiştir. Numunelerin 20 saniye yükleme süresinde 5 farklı noktadan sertlik değerleri alındı ve bu sertlik değerlerinin ortalaması alınarak ortalama sertlik değerleri belirlendi. Aşınma testleri pin-on-disk deney cihazında farklı yük değerlerinde (5 N, 10 N ve 15 N) toplam 300 metre kayma mesafesinde, 50 mm/sn kayma hızında ve kuru şartlarda yapıldı. Sürtünme katsayısı değerleri ile aşınma sonucundaki ağırlık kayıpları incelendi. Yapılan deneyler sonucunda hBN katkısının AZ91 alaşımı üzerinde sertlik değerinde çok daha yüksek değerleri getirdiği görülmüştür. Yine aynı şekilde yapılan aşınma deneylerinde de hBN katkısı aşınmaya dirençli bir kompozit elde edilmesini sağlamıştır.

Investigation of tribological properties of hexagonal boron nitride reinforced AZ91 magnesium composites produced by powder metallurgy

In this study, homogeneous composite material mixtures were made by supplementing AZ91 magnesium alloy and AZ91 alloy with 10% by weight hBN (hexagonal boron nitride) nanoparticles. The prepared powders were pressed by cold pressing method with 400 MPa pressure and sintered at 590 °C in argon atmosphere. Microstructures of the prepared samples were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. The hardness values of the samples were taken from 5 different points during the 20 second loading time and the average hardness values were determined by taking the average of these hardness values. Wear tests were carried out in a pin-on-disc test device at different load values (5 N, 10 N and 15 N) at a total sliding distance of 300 meters, at a sliding speed of 50 mm/sec and in dry conditions. The friction coefficient values and the weight losses as a result of wear were examined. As a result of the experiments, it was seen that the hBN additive brought much higher hardness values on the AZ91 alloy. In the same wear tests, the hBN additive provided a wear-resistant composite.

___

  • [1] Easton, M., Song, W. Q., & Abbott, T. (2006). A comparison of the deformation of magnesium alloys with aluminium and steel in tension, bending and buckling. Materials & Design, 27(10), 935-946. https://doi.org/10.1016/j. matdes.2005.03.005.
  • [2] Bagheri, B., Abbasi, M., Abdollahzadeh, A., & Kokabi, A. H. (2020). A comparative study between friction stir processing and friction stir vibration processing to develop magnesium surface nanocomposites. International Journal of Minerals, Metallurgy and Materials, 27, 1133- 1146. https://doi.org/10.1007/s12613-020-1993-4.
  • [3] Bagheri, B., & Abbasi, M. (2020). Development of AZ91/ SiC surface composite by FSP: Effect of vibration and process parameters on microstructure and mechanical characteristics. Advances in Manufacturing, 8(1), 82-96. https://doi.org/10.1007/s40436-019-00288-9.
  • [4] Tandon, R., & Madan, D. (2014). Emerging applications using magnesium alloy powders: A feasibility study. In: Alderman, M., Manuel, M.V., Hort, N., & Neelameggham, N.R. (eds). Magnesium Technology 2014. (pp. 21-25). Springer. https://doi.org/10.1007/978-3-319-48231-6_7. ISBN 9783319482316.
  • [5] Burke, P., Kipouros, Y. G., Judge, W. D., & Kipouros, G. J. (2019). Surprises and pitfalls in the development of magnesium powder metallurgy alloys. Magnesium and Its Alloys. (pp. 337-373). CRC Press. ISBN 9781351045476.
  • [6] Fenker, M., Balzer, M., & Kappl, H. (2014). Corrosion protection with hard coatings on steel: Past approaches and current research efforts. Surface and Coatings Technology, 257, 182-205. https://doi.org/10.1016/j. surfcoat.2014.08.069.
  • [7] Gökçe, A., Fındık, F., & Kurt, A. O. (2011). Microstructural examination and properties of premixed Al–Cu–Mg powder metallurgy alloy. Materials Characterization, 62(7), 730-735. https://doi.org/10.1016/j.matchar.2011.04.021.
  • [8] Jabbari Taleghani, M. A. (2014). Processing and properties of high performance 7075 Al and AZ91 Mg powder metallurgy alloys [Doctoral dissertation, Universidad Carlos III de Madrid]. http://hdl.handle. net/10016/20871.
  • [9] Aydoğmuş, T., Kelen, F., & Aydemir, E. (2020). Processing of AZ91 Magnesium Alloy via Hot Pressing Technique. Bitlis Eren University Journal of Science, 9(1), 277-287. https://doi.org/10.17798/bitlisfen.555946
  • [10] Yuan, Q. H., Zeng, X. S., Liu, Y., Luo, L., Wu, J. B., Wang, Y. C., & Zhou, G. H. (2016). Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO. Carbon, 96, 843- 855. https://doi.org/10.1016/j.carbon.2015.10.018.
  • [11] Nouri, M., & Li, D. Y. (2017). Maximizing the benefit of aluminizing to AZ31 alloy by surface nanocrystallization for elevated resistance to wear and corrosive wear. Tribology International, 111, 211-219. https://doi. org/10.1016/j.triboint.2017.03.009.
  • [12] Dinaharan, I., Zhang, S., Chen, G., & Shi, Q. (2022). Assessment of Ti-6Al-4V particles as a reinforcement for AZ31 magnesium alloy-based composites to boost ductility incorporated through friction stir processing. Journal of Magnesium and Alloys, 10(4), 979-992. https://doi.org/10.1016/j.jma.2020.09.026.
  • [13] Bagheri, B., Abbasi, M., Abdollahzadeh, A., & Mirsalehi, S. E. (2020). Effect of second-phase particle size and presence of vibration on AZ91/SiC surface composite layer produced by FSP. Transactions of Nonferrous Metals Society of China, 30(4), 905-916. https://doi. org/10.1016/S1003-6326(20)65264-5.
  • [14] Yu, W., Wang, X., Zhao, H., Ding, C., Huang, Z., Zhai, H., … & Xiong, S. (2017). Microstructure, mechanical properties and fracture mechanism of Ti2AlC reinforced AZ91D composites fabricated by stir casting. Journal of Alloys and Compounds, 702, 199-208. https://doi. org/10.1016/j.jallcom.2017.01.231.
  • [15] Aatthisugan, I., Razal Rose, A., & Selwyn Jebadurai, D. (2017). Mechanical and wear behaviour of AZ91D magnesium matrix hybrid composite reinforced with boron carbide and graphite. Journal of Magnesium and Alloys, 5(1), 20-25. https://doi.org/10.1016/j. jma.2016.12.004.
  • [16] Meher, A., Mahapatra, M. M., Samal, P., & Vundavilli, P. R. (2020). Study on effect of TiB2 reinforcement on the microstructural and mechanical properties of magnesium RZ5 alloy based metal matrix composites. Journal of Magnesium and Alloys, 8(3), 780-792. https:// doi.org/10.1016/j.jma.2016.12.004.
  • [17] Liu, P., Jiang, H., Cai, Z., Kang, Q.,n & Zhang, Y. (2016). The effect of Y, Ce and Gd on texture, recrystallization and mechanical property of Mg–Zn alloys. Journal of Magnesium and Alloys, 4(3), 188-196. https://doi. org/10.1016/j.jma.2016.07.001.
  • [18] Wang, C. J., Kang, J. W., Deng, K. K., Nie, K. B., Liang, W., Li, W. G. (2020). Microstructure and mechanical properties of Mg-4Zn-xGd (x=0, 0.5, 1, 2) alloys. Journal of Magnesium and Alloys, 8(2), 441-451. https://doi.org/10.1016/j.jma.2019.06.005.
  • [19] Song, J., She, J., Chen, D., & Pan, F. (2020). Latest research advances on magnesium and magnesium alloys worldwide. Journal of Magnesium and Alloys, 8(1), 1-41. https://doi.org/10.1016/j.jma.2020.02.003.
  • [20] Haubner, R., Herrmann, M., Lux, B., Petzow, G., Weissenbacher, R., & Wilhelm, M. (2003). High performance non-oxide ceramics II (Vol. 102). Springer. https://doi.org/10.1007/3-540-45623-6.
  • [21] Tyagi, R., Xiong, D., & Li, J. (2011). Effect of load and sliding speed on friction and wear behavior of silver/h-BN containing Ni-base P/M composites. Wear, 270(7-8)
  • [22] Chen, B., Bi, Q., Yang, J., Xia, Y., & Hao, J. (2008). Tribological properties of solid lubricants (graphite, h-BN) for Cu-based P/M friction composites. Tribology International, 41(12), 1145-1152. https://doi. org/10.1016/j.triboint.2008.02.014.
  • [23] Tyagi, R., Xiong, D. S., Li, J. L., & Dai, J. (2010). Hightemperature friction and wear of Ag/h-BN-containing Nibased composites against steel. Tribology Letters, 40, 181-186. https://doi.org/10.1007/s11249-010-9655-8.
  • [24] Yan, Y., Cao, H., Kang, Y., Yu, K., Xiao, T., Luo, J., & Dai, Y. (2017). Effects of Zn concentration and heat treatment on the microstructure, mechanical properties and corrosion behavior of as-extruded Mg-Zn alloys produced by powder metallurgy. Journal of Alloys and Compounds, 693, 1277-1289. https://doi.org/10.1016/j. jallcom.2016.10.017.
  • [25] Rashad, M., Pan, F., Asif, M., & Tang, A. (2014). Powder metallurgy of Mg-1% Al-1% Sn alloy reinforced with low content of graphene nanoplatelets (GNPs). Journal of Industrial and Engineering Chemistry, 20(6), 4250-4255. https://doi.org/10.1016/j.jiec.2014.01.028.
  • [26] Lingaraju, S. V., Mallikarjuna, C., Annappa, A. R., & Venkatesha, B. K. (2022). Processing, and characterization of AZ91D magnesium alloy reinforced nano TiC, B4C, and HBN composites. Materials Today: Proceedings, 54, 479-485. https://doi.org/10.1016/j. matpr.2021.11.118.
  • [27] Mahathanabodee, S., Palathai, T., Raadnui, S., Tongsri, R., & Sombatsompop, N. (2014). Dry sliding wear behavior of SS316L composites containing h-BN and MoS2 solid lubricants. Wear, 316(1-2), 37-48. https://doi.org/10.1016/j.wear.2014.04.015.
  • [28] Baradeswaran, A., & Elaya Perumal, A.(2013). Influence of B4C on the tribological and mechanical properties of Al 7075-B4C composites. Composites Part B: Engineering, 54, 146-152. https://doi.org/10.1016/j. compositesb.2013.05.012.
  • [29] Sharma, P., Sharma, S., & Khanduja, D. (2015). Production and some properties of Si3N4 reinforced aluminium alloy composites. Journal of Asian Ceramic Societies, 3(3), 352-359. https://doi.org/10.1016/j. jascer.2015.07.002.
  • [30] Yuan, Q. H., Zeng, X. S., Liu, Y., Luo, L., Wu, J. B., Wang, Y. C., & Zhou, G. H. (2016). Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO. Carbon, 96, 843-855. https://doi.org/10.1016/j.carbon.2015.10.018.
  • [31] Yıldırım, M., & Özyürek, D. An investigation of wear behaviours of Mg matrix composites reinforced carbon nanotube produced by powder metallurgy method. International Journal of Engineering Research and Development, 13(3), 1-8. https://doi.org/10.29137/ umagd.1038336.
  • [32] Turan, M. E., Zengin, H., & Sun, Y. (2020). Dry sliding wear behavior of (MWCNT+GNPs) reinforced AZ91 magnesium matrix hybrid composites. Metals and Materials International, 26, 541-550. https://doi. org/10.1007/s12540-019-00338-8.
  • [33] Loganathan, P., Gnanavelbabu, A., & Rajkumar, K.(2021). Investigation on mechanical and wear behaviour of AA2024/hBN composites synthesized via powder metallurgy routine. Materials Today: Proceedings, 45, 7865-7870. https://doi.org/10.1016/j.matpr.2020.12.503.
  • [34] Ayyanar, S., Gnanavelbabu, A., Rajkumar, K., & Loganathan, P. (2021). Studies on high temperature wear and friction behaviour of AA6061/B 4 C/hBN hybrid composites. Metals and Materials International, 27, 3040- 3057. https://doi.org/10.1007/s12540-020-00710-z.
  • [35] Tyagi, R., Xiong, D., & Li, J. (2011). Effect of load and sliding speed on friction and wear behavior of silver/h-BN containing Ni-base P/M composites. Wear, 270(7-8), 423-430. https://doi.org/10.1016/j.wear.2010.08.013.
  • [36] Mahathanabodee, S., Palathai, T., Raadnui, S., Tongsri, R., & Sombatsompop, N. (2013). Effects of hexagonal boron nitride and sintering temperature on mechanical and tribological properties of SS316L/h-BN composites. Materials & Design, 46, 588-597. https://doi.org/10.1016/j.matdes.2012.11.038.