Topikal Uygulamalar için Antimikrobiyal Kitosan-Sodyum tetrafloroborat (NaBF4) Hidrojeller

Bir yaranın enfeksiyonu, yaralanmış bir dokunun iyileşmesini geciktiren en önemli sebeplerden biridir. Bu çalışmada, kitosan bazlı hidrojeller, antimikrobiyal bir yara bakım ürünü geliştirmek için farklı konsantrasyonlarda sodyum tetrafloroborat (NaBF4) ile yüklenmiştir. NaBF4'ün antimikrobiyal aktivitesi ve sitotoksisitesi ve Kitosan:NaBF4 hidrojellerinin antibiyotiğe dirençli bir tür de dahil olmak üzere geniş bir mikroorganizma spektrumuna karşı antimikrobiyal aktivitesi, yüzey morfolojisi ve kimyasal bağ yapıları incelenmiştir. NaBF4, gram-pozitif bakteriler için gram-negatif bakterilerden daha yüksek antibakteriyel aktivite göstermiştir. NaBF4'ün MİK değerleri gram negatif, gram pozitif ve mantar türülerinin tamamı için aynı olmak koşuluyla sırasıyla 3,906, 1,953 ve 7,813 µg/µL olarak bulunmuştur. NaBF4'ün L929 hücre hattı üzerindeki doğrudan sitotoksisitesi, MTT ile araştırılmıştır. 24 saatlik inkübasyon sonrası IC50 değeri 3,2 µg/µL olarak hesaplanmış ve antimikrobiyal aktiviteye sahip konsantrasyon aralığında yer aldığı belirlenmiştir. Kitosan hidrojellerinin antimikrobiyal aktiviteleri disk difüzyon yöntemi ile araştırılmıştır. Hidrojelin antimikrobiyal aktivitesi artan NaBF4 konsantrasyonu ile artarken, tek başına yüksek moleküler ağırlıklı kitosandan üretilen hidrojellerde antimikrobiyal aktivite gözlemlenmemiştir. Sonuçlara göre, geniş spektrumlu antimikrobiyal aktivite elde etmek için 1:3 (hidrojeldeki NaBF4 konsantrasyonu 546,5mM) örneğinin yeterli olduğu ve bu formülasyonla hazırlanan hidrojellerin potansiyel bir antimikrobiyal yara bakım ürünü olarak kullanılabileceği öngörülmüştür.

Antimicrobial chitosan-sodium tetrafluoroborate (NaBF4) hydrogels for topical applications

Infection of a wound is one of the most important reasons delaying the recovery of an injured tissue. In this study, chitosan-based hydrogels were loaded with different concentrations of sodium tetrafluoroborate (NaBF4) to fabricate an antimicrobial wound care system. Antimicrobial activity, and cytotoxicity of NaBF4, and surface morphology, chemical bond structures and antimicrobial activity of Chitosan:NaBF4 hydrogels against a broad spectrum of microorganisms including an antibiotic resistant species were investigated. NaBF4 showed higher antibacterial activity for gram-positive bacteria than gram-negative bacteria. MIC values of NaBF4 were 3.906, 1.953, and 7.813 µg/µL for every gram-negative, gram-positive, and fungal species, respectively. Direct cytotoxicity of NaBF4 on the L929 cell line was investigated by the MTT assay. IC50 value after 24 h incubation was calculated as 3.2 µg/µL which is within the range of concentration with antimicrobial activity. The antimicrobial activities of chitosan hydrogels were investigated by disc diffusion method. Antimicrobial activity of hydrogel increased with increasing NaBF4 concentration while parent high molecular weight chitosan-based hydrogel did not show antimicrobial activity. According to the results, sample 1:3 (NaBF4 concertation is 546.5mM in the hydrogel) was enough to achieve broad spectrum antimicrobial activity and hydrogels prepared with this formulation can be used as a potential antimicrobial wound care product.

___

  • [1] Siddiqui, A. R., & Bernstein, J. M. (2010). Chronic wound infection: Facts and controversies. Clinics in Dermatology, 28(5), 519-526.
  • [2] Montanaro, L., Campoccia, D., & Arciola, C. R. (2007). Advancements in molecular epidemiology of implant infections and future perspectives. Biomaterials, 28(34),5155-5168.
  • [3] Salomé Veiga, A., & Schneider, J. P. (2013). Antimicrobial hydrogels for the treatment of infection. Biopolymers, 100(6), 637-644.
  • [4] Frieri, M., Kumar, K., & Boutin, A. (2017). Antibiotic resistance. Journal of Infection and Public Health, 10(4), 369-378.
  • [5] Paul, W., & Sharma, C. P. (2004). Chitosan and alginate wound dressings : A short review. Trends in Biometerials and Artificial Organs, 18(1), 18-23.
  • [6] Aderibigbe, B. A., & Buyana, B. (2018). Alginate in wound dressings. Pharmaceutics, 10(42), 1-19.
  • [7] Ulubayram, K., Cakar, A. N., Korkusuz, P., Ertan, C., & Hasirci, N. (2001). EGF containing gelatin-based wound dressings. Biomaterials, 22(11), 1345-1356.
  • [8] Lin, W. C., Lien, C. C., Yeh, H. J., Yu, C. M., & Hsu, S. H. (2013). Bacterial cellulose and bacterial cellulose chitosan membranes for wound dressing applications. Carbohydrate Polymers, 94(1), 603-611.
  • [9] Kofuji, K., Akamine, H., Qian, C. J., Watanabe, K., Togan, Y., … & Kawashima, S. (2004). Therapeutic efficacy of sustained drug release from chitosan gel on local inflammation. International Journal of Pharmaceutics, 272(1- 2), 65-78.
  • [10] Saito, K., Fujieda, T., & Yoshioka, H. (2006). Feasibility of simple chitosan sheet as drug delivery carrier. European Journal of Pharmaceutics and Biopharmaceutics, 64(2), 161-166.
  • [11] Anjum, S., Arora, A., Alam, M. S., & Gupta, B. (2016). Development of antimicrobial and scar preventive chitosan hydrogel wound dressings. International Journal of Pharmaceutics, 508(1-2), 92-101.
  • [12] Gaspar, V. M., Moreira, A. F., de Melo-Diogo, D., Costa, E. C., Queiroz, J. A., … & Correia, I. J. (2016). Multifunctional nanocarriers for codelivery of nucleic acids and chemotherapeutics to cancer cells. In Nanobiomaterials in Medical Imaging: Applications of Nanobiomaterials (pp. 163-207). Elsevier Inc.
  • [13] Nunes, C., Maricato, É., Cunha, Â., Nunes, A., da Silva, J. A. L., & Coimbra, M. A. (2013). Chitosan-caffeic acidgenipin films presenting enhanced antioxidant activity and stability in acidic media. Carbohydrate Polymers, 91(1), 236-243.
  • [14] Delmar, K., & Bianco-Peled, H. (2015). The dramatic effect of small pH changes on the properties of chitosan hydrogels crosslinked with genipin. Carbohydrate Polymers, 127, 28-37.
  • [15] Kim, I. Y., Seo, S. J., Moon, H. S., Yoo, M. K., Park, I. Y., Kim, B. C., & Cho, C. S. (2008). Chitosan and its derivatives for tissue engineering applications. Biotechnology Advances, 26(1), 1-21.
  • [16] Agnihotri, S., Mukherji, S., & Mukherji, S. (2012). Antimicrobial chitosan-PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Applied Nanoscience, 2(3), 179-188.
  • [17] Muzzarelli, R., El Mehtedi, M., Bottegoni, C., Aquili, A., & Gigante, A. (2015). Genipin-crosslinked chitosan gels and scaffolds for tissue engineering and regeneration of cartilage and bone. Marine Drugs, 13(12), 7314-7338.
  • [18] Moura, M. J., Figueiredo, M. M., & Gil, M. H. (2007). Rheological study of genipin cross-linked chitosan hydrogels. Biomacromolecules, 8(12), 3823-3829.
  • [19] Kim, G., Kim, N., Kim, D. Y., Kwon, J. S., & Min, B. H. (2012). An electrostatically crosslinked chitosan hydrogel as a drug carrier. Molecules, 17(12), 13704-13711.
  • [20] Woźniak, A., & Biernat, M. (2022). Methods for crosslinking and stabilization of chitosan structures for potential medical applications. Journal of Bioactive and Compatible Polymers, 37(3), 151-167.
  • [21] Chenite, A., Chaput, C., Wang, D., Combes, C., Buschmann, M. D., Hoemann, C. D., … F., & Selmani, A. (2000). Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials, 21, 2155-2161.
  • [22] Maiz-Fernández, S., Guaresti, O., Pérez-Álvarez, L., Ruiz-Rubio, L., Gabilondo, N., Vilas-Vilela, J. L., & Lanceros-Mendez, S. (2020). β-Glycerol phosphate/genipin chitosan hydrogels: A comparative study of their properties and diclofenac delivery. Carbohydrate Polymers, 248, 116811.
  • [23] Kong, M., Chen, X. G., Xing, K., & Park, H. J. (2010). Antimicrobial properties of chitosan and mode of action: A state of the art review. International Journal of Food Microbiology, 144(1), 5163.
  • [24] Mohamed, N. A., & Abd El-Ghany, N. A. (2012). Synthesis and antimicrobial activity of some novel terephthaloyl thiourea cross-linked carboxymethyl chitosan hydrogels. Cellulose, 19(6), 1879-1891.
  • [25] Ji, Q. X., Chen, X. G., Zhao, Q. S., Liu, C. S., Cheng, X. J., & Wang, L. C. (2009). Injectable thermosensitive hydrogel based on chitosan and quaternized chitosan and the biomedical properties. Journal of Materials Science: Materials in Medicine, 20(8), 1603-1610.
  • [26] Niranjan, R., Koushik, C., Saravanan, S., Moorthi, A., Vairamani, M., & Selvamurugan, N. (2013). A novel injectable temperature-sensitive zinc doped chitosan/β- glycerophosphate hydrogel for bone tissue engineering. International Journal of Biological Macromolecules, 54, 24-29.
  • [27] Chang, H. W., Lin, Y. S., Tsai, Y. D., & Tsai, M. L. (2013). Effects of chitosan characteristics on the physicochemical properties, antibacterial activity, and cytotoxicity of chitosan/2-glycerophosphate/nanosilver hydrogels. Journal of Applied Polymer Science, 127(1), 169-176.
  • [28] Li, O., Tamrakar, S., Iyigundogdu, Z., Mielewski, D., Wyss, K., Tour, J. M., & Kiziltas, A. (2023). Flexible polyurethane foams reinforced with graphene and boron nitride nanofillers. Polymer Composites, 44(3), 1494-1511.
  • [29] Iyigundogdu, Z., Kalayci, S., Asutay, A. B., & Sahin, F. (2019). Determination of antimicrobial and antiviral properties of IR3535. Molecular Biology Reports, 46(2), 1819-1824.
  • [30] Demir, D., Ceylan, S., Gül, G., İyigündoğdu, Z., & Bölgen, N. (2019). Green synthesized silver nanoparticles loaded PVA/Starch cryogel scaffolds with antibacterial properties. Tehnički Glasnik [The Technical Journal], 13(1), 1-6.
  • [31] Iyigundogdu, Z., & Saribas, I. (2022). The effect of various boron compounds on the antimicrobial activity of hardened mortars. Construction and Building Materials, 351, 128958.
  • [32] Sahin, F., Iyigundogdu, Z., Demir, O., Gulerim, M., & Argin, S. (2022). Pectin- or Gelatin-Based Antimicrobial Coating (Patent No. EP 3 494 063 B1).
  • [33] Reynolds, R. C., Campbell, S. R., Fairchild, R. G., Kisliuk, R. L., Micca, P. L., Queener, S. F., … & Borhani, D. W. (2007). Novel boron-containing, nonclassical antifolates: Synthesis and preliminary biological and structural evaluation. Journal of Medicinal Chemistry, 50(14), 3283-3289.
  • [34] Benkovic, S. J., Baker, S. J., Alley, M. R. K., Woo, Y., Zhang, Y., Akama, T., … & Shapiro, L. (2005). Identification of borinic esters as inhibitors of bacterial cell growth and bacterial methyltransferases, CcrM and MenH. Journal of Medicinal Chemistry, 48(23), 7468-7476.
  • [35] Ghammamy, S., & Keysan, S. (2012). Synthesis, characterization, theoretical calculations and biological studies of nano sodium tetrafluoroborate (III). International Journal of Nano Dimension, 3(1), 27-33 . [36] Suner, S. S., Sahiner, M., Akcali, A., & Sahiner, N. (2020). Functionalization of halloysite nanotubes with polyethyleneimine and various ionic liquid forms with antimicrobial activity. Journal of Applied Polymer Science, 137(6), 48352.
  • [37] Yilmaz, M. T. (2012). Minimum inhibitory and minimum bactericidal concentrations of boron compounds against several bacterial strains. Turkish Journal of Medical Sciences, 42(8), 1423-1429.
  • [38] Sayin, Z., Ucan, U. S., & Sakmanoglu, A. (2016). Antibacterial and antibiofilm effects of boron on different bacteria. Biological Trace Element Research, 173(1), 241-246.
  • [39] Dutta, P. K., Tripathi, S., Mehrotra, G. K., & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114(4), 1173-1182.
  • [40] Stepnowski, P., Skladanowski, A. C., Ludwiczak, A., & Laczyńska, E. (2004). Evaluating the cytotoxicity of ionic liquids using human cell line HeLa. Human & Experimental Toxicology, 23(11), 513-517.
  • [41] Aydin, H. E., Gunduz, M. K., Kizmazoglu, C., Kandemir, T., & Arslantas, A. (2021). Cytotoxic effect of boron application on glioblastoma cells. Turkish Neurosurgery, 31(2), 206-210.
  • [42] Kirlangic, Ö. F., Kaya-Sezginer, E., Oren, S., Gur, S., Yavuz, Ö., & Ozgurtas, T. (2022). Cytotoxic and apoptotic effects of the combination of borax (Sodium tetraborate) and 5-fluorouracil on DLD-1 human colorectal adenocarcinoma cell line. Turkish Journal of Pharmaceutical Sciences, 19(4), 371-376.
  • [43] Hayal, T. B. (2020). Boron increases the viability of human cancer and murine fibroblast cells after long time of cryopreservation. Trakya University Journal of Natural Sciences, 21(2), 11.
  • [44] Nigoghossian, K., Miyashita, T., Omura, A., Yeroslavsky, G., Kim Dung, D. T., Okubo, K., … & Soga, K. (2020). Infrared to visible upconversion luminescence of trivalent erbium tetrafluoroborate complexes. Optical Materials Express, 10(7), 1749.
  • [45] Lustriane, C., Dwivany, F. M., Suendo, V., & Reza, M. (2018). Effect of chitosan and chitosan-nanoparticles on post harvest quality of banana fruits. Journal of Plant Biotechnology, 45(1), 36-44.
  • [46] Venkatesan, J., Jayakumar, R., Mohandas, A., Bhatnagar, I., & Kim, S.-K. (2014). Antimicrobial activity of chitosan-carbon nanotube hydrogels. Materials, 7(5), 3946-3955.
  • [47] Zheng, L. Y., & Zhu, J. F. (2003). Study on antimicrobial activity of chitosan with different molecular weights.
  • [48] Wang, X., Du, Y., & Liu, H. (2004). Preparation, characterization and antimicrobial activity of chitosan-Zn complex. Carbohydrate Polymers, 56(1), 21-26.
  • [49] Rhim, J.-W., Hong, S. I., Park, H. M., & Ng, P. K. W. (2006). Preparation and characterization of chitosanbased nanocomposite films with antimicrobial activity. Journal of Agricultural and Food Chemistry, 54(16), 5814-5822.
  • [50] Ke, C. L., Deng, F. S., Chuang, C. Y., & Lin, C. H. (2021). Antimicrobial actions and applications of chitosan. Polymers, 13(6), 904.
  • [51] Tyliszczak, B., Drabczyk, A., Kudłacik-Kramarczyk, S., Bialik-Wąs, K., Kijkowska, R., & Sobczak-Kupiec, A. (2017). Preparation and cytotoxicity of chitosan-based hydrogels modified with silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 160, 325-330.
  • [52] Huang, S. W., Yeh, F. C., Ji, Y. R., Su, Y. F., Su, Y. S., Chiang, M. H., … & Lee, Y. T. (2021). Chitosan-based hydrogels to treat hydrofluoric acid burns and prevent infection. Drug Delivery and Translational Research, 11(4), 1532-1544.
  • [53] Saita, K., Nagaoka, S., Shirosaki, T., Horikawa, M., Matsuda, S., & Ihara, H. (2012). Preparation and characterization of dispersible chitosan particles with borate crosslinking and their antimicrobial and antifungal activity. Carbohydrate Research, 349, 52-58.