Theoretical study of B segregation in Mo(110)

Theoretical study of B segregation in Mo(110)

[24] Fuqua C., Parsek M. R., Greenberg E. P., Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing, Annu. Rev. Genet., 35, 439-468, 2001. [25] Ishida T., Ikeda T., Takıguchi N., Kuroda A., Ohtake H., Kato J., Inhıbition of Quorum Sensing in Pseudomonas aeruginosa by N- Acyl Cyclopentylamides, Appl. Environ. Microbiol., 3183-3188, 2007. [26] Donlan R. M., Costerton J. W., Biofilms: survival mechanisms of clinically relevant microorganisms, Clin. Microbiol. Rev., 15, 167-193, 2002. [27] Bjarnsholt T., Van Gennip M., Jakobsen T. H., Christensen L. D., Jensen P. Ø., Givskov M., In vitro screens for quorum sensing inhibitors and in vivo confirmation of their effect, Nat. Protoc., 5, 282, 2010. [28] De Kievit T. R., Gillis R., Marx S., Brown C., Iglewski, B. H. Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns, Appl. Environ. Microbiol., 67, 1865-1873, 2001. [29] Sayin Z., Ucan U. S., Sakmanoglu A., Antibacterial and Antibiofilm Effects of Boron on Different Bacteria, Biol .Trace Elem. Res., 173:241–246, 2016. [30] Köhler T., Curty L. K., Barja F., Van Delden C., PecheRe J.-C., Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili, J. Bacteriol., 182, 5990-5996, 2000.

___

  • Chen J. G., Menning C. A., Zellner M. B., Monolayer bimetallic surfaces: Experimental and theoretical studies of trends in electronic and chemical properties, Surf. Sci. Rep., 63, 201-254, 2008.
  • Horn K., Scheffler M., Electronic Structure, Handbook of Surface Science Amsterdam: North-Holland, 2000.
  • Somorjai G. A., Introduction to Surface Chemistry and Catalysis, Wiley New York, 1994.
  • Bonzel P., Bradshaw A. M., Ertl G., Physics and Chemistry of Alkali Metal Adsorption Elsevier Amsterdam, 1989.
  • Bol’shov L. A, Napartovich A. I., Naumovets A. G., Fedorus A., G., Submonolayer films on the surface of metals, Sov. Phys. Usp. 20, 432-451, 1977.
  • Gleichweit C., Neiss C., Maisel S., Bauer U., Späth F., Höfert O., Vollnhals F., Drost M., Marbach H., Görling A., Steinrück H-P., Papp C., Comparative study of the carbide-modified surfaces C/Mo(110) and C/Mo(100) using high-resolution x-ray photoelectron spectroscopy, Phys. Rev. B, 92, 014114 2015.
  • Bauer U., Gleichweit C., Höfert O., Späth F., Gotterbarm K., Steinrück H-P., Papp C., Reactivity studies of ethylene, benzene and cyclohexane on carbide-modified Mo(110) using high resolution X-ray photoelectron spectroscopy, Surf. Sci., 000 1–9 article in press, 2018.
  • Petrova N. V., Yakovkin I. N., Density-functional and Monte Carlo study of O/Mo(110): Structures and desorption, Phys. Rev. B, 76, 205401, 2007.
  • Zhou Y. G., Zu X. T., Nie J. L., Gao F., Adsorption of O on Mo(110) surface from first-principles calculation, Eur. Phys. J., B, 67, 27–34, 2009.
  • Arnold M., Sologuby S., Frie W., Hammer L. Heinz K., Hydrogen-induced buckling of Mo(110) at submonolayer coverage, J. Phys.: Condens. Matter. , 9, 6481– 649, 1997.
  • Wang T., Tian X., Yang Y., Li Y-W., Wang J., Bellera M., Jiao H., Structures of seven molybdenum surfaces and their coverage dependent hydrogen adsorption, Chem. Phys., 18, 6005-6012, 2016.
  • Altman M., Chung J. W., Estrup P. J., Kosterlitz J. M., Prybyla J., Sahu D., Ying S. C., Phase transformations of the H/W(110) and H/Mo(110) surfaces, J. Vac. Sci. Technol., A, 5, 1045 1987.
  • Kohler B., Ruggerone P., Wilke S. and Scheffler M., Frustrated H-Induced Instability of Mo (110), Phys. Rev. Lett., 74, 1387, 1995.
  • Magkoev T. T., Turievl A. M., Tsidaeva N. I., Panteleev D. G., Vladimirov G. G., Rump G. A., Adsorption of boron on a Mo(110) surface, J. Phys. Condens. Matter., 20, 485007, 2008.
  • Proskurin D., Nikolaychik A., Koval I.F. and Yakavkin I. N., Electronic structure of Sb monolayers on the Mo(110) surface, Physica Stat. Solidi B, 243, 584, 2006.
  • Cumberland R. W., Weinberger M. B., Gilman J. J., Clark S. M., Tolbert S. H., Kaner R. B., Osmium Diboride, An Ultra-Incompressible, Hard Material, J. Am. Chem. Soc., 127, 7264-7265, 2005.
  • Chung H. Y., Weinberger M. B., Levine J. B., Kavner A., Yang J. M., Tolbert S. H., Kaner R. B., Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure, Sci., 316, 436, 2007.
  • Qin J. Q., He D. W., Wang J. H., Fang L. M., Lei L., Li Y. J., Hu J., Kou Z. L., Bi Y., Is Rhenium Diboride a Superhard Material?, Adv. Mater. 20, 4780-4783, 2008.
  • Dubrovinskaia N., Dubrovinsky L. Solozhenko V. L., Comment on “Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure”, Sci., 318, 1550c, 2007.
  • Li Q., Zhou D., Zheng W., Ma Y., Chen C., Global Structural Optimization of Tungsten Borides, Phys. Rev. Lett. 110, 136403, 2013.
  • Mohammadi R., Lech A. T., Xie M., Weaver B. E., Yeung M. T., Tolbert S. H., Kaner R. B., Tungsten tetraboride, an inexpensive superhard material, Proc. Natl. Acad. Sci. U. S. A. 108, 10958-10962, 2011.
  • Gu Q., Krauss F., Steurer W., Transition Metal Borides: Superhard versus Ultra-incompressible, Adv. Mater. 20, 3620-3626, 2008.
  • Niu H., Wang J., Chen X.-Q., Li D., Li Y., Lazar P., Podloucky R., Kolmogorov A. N., Structure, bonding, and possible superhardness of CrB4, Phys. Rev. B, 85, 144116, 2012.
  • Li Q., Wang H., Ma Y. M., Predicting new superhard phases, J. Superhard Mater. 32, 192-204, 2010.
  • Tian Y., Xu B., Zhao Z., Microscopic theory of hardness and design of novel superhard crystals, Int. J. Refract. Met. Hard Mater. 33, 93-106, 2012.
  • Chung H. Y., Yang J. M., Tolbert S. H., Kanerb R. B., Anisotropic mechanical properties of ultra-incompressible, hard osmium diboride, J. Mater. Res. 23, 17971801, 2008.
  • Tao Q., Zhao X., Chen Y., Li J., Li Q., Ma Y., Li J., Cui T., Zhu P., Wang X., Enhanced Vickers hardness by quasi-3D boron network in MoB2, RSC Adv. 3, 1831718322, 2013.
  • Zhang M., Wang H., Wang H., Cui T., Ma Y., Structural Modifications and Mechanical Properties of Molybdenum Borides from First Principles, J. Phys. Chem. C, 114, 6722-6725, 2010.
  • Okada S., Atoda T., Higashi I., Takahashi Y., Preparation of single crystals of MoB2 by the aluminium-flux technique and some of their properties, J. Mater. Sci., 22, 2993-2999, 1987.
  • Kiessling R., The crystal structures of molybdenum and tungsten borides, Acta Chem. Scand. 1, 893-916, 1947.
  • Kudaka K., Iizumi K., Sasaki T., Okada S., Mechanochemical synthesis of MoB2 and Mo2B5, J. Alloys Compd. 315, 104-107, 2001.
  • Frotscher M., Klein W., Bauer J., Fang C. M., Halet J. F., Senyshyn A., Baehtz C., Albert B. Z, M2B5 or M2B4? A Reinvestigation of the Mo/B and W/B System, Z. Anorg. Allg. Chem., 633, 2626-2630, 2007.
  • Zhou D., Wang J., Cui Q., Li Q., Crystal structure and physical properties of Mo2B: First-principle calculations, J. App. Phys., 115, 113504, 2014.
  • Oganov A. R., Solozhenko V. L., Boron: A hunt for superhard polymorphs, J. Superhard Mater. 31, 285, 2009.
  • Oganov A. R., Chen J., Gatti C., Ma Y., Glass C. W., Liu Z., Yu T., Kurakevych O. O., Solozhenko V. L., Ionic high-pressure form of elemental boron, Nature 457, 863-867, 2009.
  • Zhou W., Sun H., Chen C., Soft Bond-Deformation Paths in Superhard γ-Boron, Phys. Rev. Lett. 105, 215503, 2010.
  • Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comp. Mat. Sci., 6, 15-50, 1996.
  • Kresse G., Furtmüller J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169, 1996.
  • Perdew J. P., Burke K., Ernzerhof M., Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865, 1996.
  • Blochl P., Projector augmented-wave method, Phys. Rev. B, 50, 17953, 1994.
  • Monkhorst H., Pack J., Special points for Brillouinzone integrations, Phys. Rev. B, 13, 5188, 1976.
  • Katahara K. W., Manghnani M. H., Fisher E. S., Pressure derivatives of the elastic moduli of BCC Ti-V-Cr, Nb-Mo and Ta-W alloys, J. Phys. F 9, 773, 1979.
  • Mattheiss L. F. and Hamann D.R., Linear augmentedplane-wave calculation of the structural properties of bulk Cr, Mo, and W, Phys. Rev. B, 33, 823, 1986.
  • Zunger A., Cohen M. L., Self-consistent pseudopotential calculation of the bulk properties of Mo and W, Phys. Rev. B, 19, 568 ,1979.
  • Rotenberg E., Chung J. W., Kevan S. D., Spin-Orbit Coupling Induced Surface Band Splitting in Li/W(110) and Li/Mo(110), Phys. Rev. Lett. 82, 4066-4069, 1999.
  • Yu Y., Xiao W., Wang J., Wang L., Correction: FirstPrinciples Study of Mo Segregation in MoNi(111): Effects of Chemisorbed Atomic Oxygen, Materials 9, 352, 2016.
  • Yu Y., Xiao W., Wang J.and Wang L., Understanding the surface segregation behavior of transition metals on Ni(111): a first-principles study, Chem. Phys. 18, 26616-26622, 2016.