A comparison of the acute toxicity and bioaccumulation of boron particles (nano and micro) in chodatodesmus mucronulatus

A comparison of the acute toxicity and bioaccumulation of boron particles (nano and micro) in chodatodesmus mucronulatus

In this study, pigmentation (Chlorophyll a, Chlorophyll b and carotenoid), bioaccumulation, and oxidative stress response upon boron particles exposure were investigated in Chodatodesmus mucronulatus, unicellular algae. The Effects of acute exposure was measured by growing algae in BG-11 media supplemented with varying concentrations of boron particles for 72 h. Nano boron has increased chlorophyll content for 48 h. However, as exposure time was prolonged, nano boron was toxic to the algae. Micro boron particles also indicated similar effects. Nano boron increased chlorophyll b at 48 hours. On the other hand, levels of chlorophyll b seem to decrease for the remaining part. Bioaccumulation of the boron particles did not notably change upon varying particle concentration. Nano boron particles toxicity is conclusively seen at 72 h of exposure. Additionally, nano boron particles are concluded to be more toxic than micro boron to the Chodatodesmus mucronulatus.

___

  • Handy R. D., Owen R., Valsami-Jones E., The ecotoxicology of nanoparticles and nanomaterials: Current status, knowledge gaps, challenges, and future needs, Ecotoxicology, 17, 315-325, 2008.
  • Ateş M., Daniels J., Arslan Z., Farah O. İ., Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia salina: assessment of nanoparticle aggregation, accumulation and toxicity, Environ. Monit., Asses7/s10661-012-2794-7, 2012.
  • Nel A., Xia T., Madler L., Li N., Toxic potential of materials at the nanolevel, Science, 311, 622–627, 2006. [
  • Service R. F., Nanotechnology, Calls rise for more research on toxicology of nanomaterials, Science, 310, 1609, 2005.
  • Xia T., Kovochich M., Brant J., Hotze M., Sioutas C., Sempf J., Oberley T., Yeh I. J., Wiesner R. M., Nel A.E., Comparison of the Abilities of Ambient and Manufac tured Nanoparticles To Induce Cellular Toxicity According to an Oxidative Stress Paradigm, Nano Lett., 6 (8), 1794-1807, 2006.
  • Donaldson K., Stone V., Tran C., Kreyling W., Borm P. J., Nanotoxicology, Occup. Environ. Med. 61, 727728, 2004.
  • Oberdorster G., Maynard A., Donaldson K., Castranova V., Fitzpatrick J., Ausman K., Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy, Part Fibre Toxicol., 2:8, 2005.
  • Oberdorster G., Oberdorster E., Oberdorster J., Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles, Environ Health Perspect, 113 823–839, 2005b.
  • Oberdorster G., Stone V., Donaldson K., Toxicology of nanoparticles: A historical perspective, Nanotoxicology, 1, 2–25, 2007.
  • Jiang J., Chen D. R., Biswas. P., Synthesis of nanoparticles in a flame aerosol reactor (FLAR) with independent and strict control of their size, crystal phase and morphology, Nanotechnol., 18 (28), 8, 2007.
  • Chatterjee R., The challenge of regulating nanomaterials, Environ. Sci. Technol., 42, 339–343, 2008.
  • Choi J. Y., Ramachandran, G., Kandlikar M., The impact of toxicity testing costs on nanomaterial regulation, Environ. Sci. Technol., 43, 3030–3034, 2009.
  • Oberdorster E., Manufactured nanomaterials (Fullerenes, C-60) induce oxidative stress in the brain of juvenile largemouth bass, Environ Health Perspect, 112, 1058–1062, 2004.
  • Hoshino A., Fujioka K., Oku T., Suga M., Sasaki Y. F., Ohta T., Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification, Nano Lett., 4, 2163–2169, 2004.
  • Magrez A., Kasas S., Salicio V., Pasquier N., Seo J. W., Celio M., Cellular toxicity of carbon-based nanomaterials, Nano Lett., 6, 1121–1125, 2006.
  • Petersen M. S., Petersen C. C., Agger R., Sutmuller M., Jensen P. G., Sorensen M. W., Mortensen T., Huiskamp R., Hokland M., Boron nanoparticles inhibit tumour growth by boron neutron capture therapy in the murine B16-OVA model, Anticancer Res., 571-576, 2008.
  • Daughton C. G, Non-Regulated Water Contaminants: Emerging Research, Environ. Impact Assess. Rev., 24, 711-732, 2004.
  • Radix P., Léonard M., Papantoniou C., Roman G., Saouter E., Gallotti-Schmitt S., Comparison of four chronic toxicity tests using algae, bacteria, and invertebrates assessed with sixteen chemicals, Ecotoxicol. Environ. Saf., 47, 186–94, 2000.
  • Blinova I., Use of freshwater algae and duckweeds for phytotoxicity testing, Environ. Toxicol., 19,425–8, 2004.
  • Adyy G., Green L., Algae in Aquatic Ecosystems, Natural Resources Facts, Fact Sheet No.96-4, 1996.
  • Boyle T. P., The effect of environmental contaminants on aquatic algae. In: Shurbert, L.E. (Ed). In algae as Ecological Indıcators, Academic pres, NewYork, pp. 237-256, 1984.
  • Ji J., Long Z., Lin D., Toxicity of oxide nanoparticles to the gren algae Chlorella sp. Chem. Eng. J., 170, 525530, 2011.
  • Chen L., Zhou L., Liu Y., Deng S., Wu H., Wang G., Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii, Ecotoxicol. Environ. Saf., 84, 155–162, 2012.
  • Tuominen M., Schultz E., Sillanpää M., Toxicity and stability of silver nanoparticles to the green alga Pseudokirchneriella subcapitata in boreal freshwater samples and growth media, Nanomaterials and the Environment, 48–57, 2013.
  • Barhoumi L., Dewez D., Toxicity of Superparamagnetic Iron Oxide Nanoparticles on Green Alga Chlorella vulgaris, Hindawi Publishing Corporation Biomed Res. Int., 2013, 1-11, 2013.
  • Curtis D. E., Boron stimulates embryonic trout growth, J. Nutr, 128, 2488–2493, 1998.
  • Moseman R. F., Chemical disposition of boron in animals and humans, Environ.Health Perspect, 102 ,113– 117, 1994.
  • Li E., Xiong Z., Chen L., Zeng C., Li K., Acute toxicity of boron to juvenile white shrimp, Litopenaeus vannamei, at two salinities, Aquaculture, 278 175-178, 2008.
  • Rippka R., Methods in enzymology, vol. 167, Academic Press, New York, pp. 3-27, 1988.
  • Lichtenthaler H. K., Wellburn A. R., Determinations of total carotenoids and chlorophyll a and b of leaf extracts in different solvents., Biochem. Soc. Trans, (London) 63, 591–592, 1983.
  • EPA Method 200.7, May determination of metals and trace elements ın water and wastes by ınductively coupled plasma-atomic emission spectrometry, Revision 4.4, EMMC Version, Methods for the Determination of Metals in Environmental Samples-Supplement I, EPA/600/R-94-111, 1994.
  • Li N., Xia T., Nel A. E., The role of oxidative stress in ambient particulate matter-induced lung diseases and its implication in the toxicity of engineered nanoparticles, Free Radic. Biol. Med. 44 1689–99, 2008.
  • Gerber B. I, Dubery A. I., Fluorescence microplate assay for the detection of oxidative burst products in tobacco cell suspensions using 2′,7′-dichlorofluorescein, Methods in Cell Science, 25, 115–122, 2003.
  • Zhang X. W., Zou Y. J., Yan H., Wang B., Chen G. H., Wong S. P., Electrical properties and annealing effects on the stress of RF-sputtered c-BN films, Mater. Lett., 45, 111–115, 2000.
  • Mortensen M. W., Sorensen P. G., Bjorkdahl O., Jensen M. R., Gundersen, H. J. G., Bjornholm T., Preparation and characterization of boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy, Appl Radiat Isotopes, 64,315–324, 2006.
  • Van Devener B., Perez, J. P. L., Jankovich J., Anderson S. L., Oxide-free, catalyst-coated, fuel-soluble, air-stable boron nanopowder as combined combustion catalyst and high energy density fuel, Energ Fuel, 23, 6111–6120, 2009.
  • Bekish Y. N., Poznyak S. K., Tsybulskaya L. S., Gaevskaya T. V., Electrodeposited Ni–B alloy coatings: Structure, corrosion resistance and mechanical properties, Electrochim. Acta, 55, 2223–2231, 2010.
  • Shin G. W., Calder S., Ugurlu O., Girshick L. S., Production and characterization of boron nanoparticles synthesized with a thermal plasma system, J. Nanopart. Res., 13, 7187–7191 2011.
  • Petersen M. S., Petersen C. C., Agger R., Sutmuller M., Jensen P. G., Sorensen M. W., Mortensen T., Huiskamp R., Hokland M., Boron nanoparticles inhibit tumour growth by boron neutron capture therapy in the murine B16-OVA model, Anticancer Res., 571-576, 2008.
  • Strigul N., Vaccari L., Galdun C., Wazne,M., Liu X., Christodoulatos C., Jasinkiewicz K., Acute toxicity of boron, titanium dioxide, and aluminum nanoparticles to Daphnia magna and Vibrio fischeri, Desalin., 248 (1-3), 771-782, 2009.
  • Maier K. J., Knight, A. W., The toxicity of waterborne boron to Daphnia magna and Chironomus decorus and the effects of water hardness and sulfate on boron toxicity, Arch. Environ. Contam. Toxicol., 20 (2), 282287, 1991.
  • Oukarroum A., Bra S., Perreault F., Popovic R., Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta, Ecotoxicol. Environ. Saf. 78, 80–85, 2012.
  • Oberdorster G., Maynard A., Donaldson K., Castranova V., Fitzpatrick J., Ausman K., Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy, Part Fibre Toxicol., 2- 8, 2005.
  • Da Silva L. C., Oliva M. A., Azevedo A. A., De Araújo J. M., Responses of restinga plant species to pollution from an iron pelletization factor, Water Air Soil Pollut.,175, 241–256, 2006.
  • Yang K., Zhu L., Xing B., Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials, Environ. Sci. Technol., 40, 1855–1861, 2006.
  • Knauer K., Sobek A., Bucheli, T. D., Reduced toxicity of diuron to the freshwater green alga Pseudokirchneriella subcapitata in the presence of black carbon, Aquat. Toxicol., 83, 143–148, 2007.
  • Baun A., Sørensen S. N., Rasmussen R. F., Hartmann N. B., Koch C. B. Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of nsions of aggregates of nano-C60, Aquat . Toxicol., 86, 379– 387, 2008.
  • Sondi I., Sondi S. B., Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria, J. Colloid Interface Sci., 275, 177–182, 2004.
  • Navarro E., Baun A., Behra R., Hartmann B.N., Filser J., Miao A-J., Quigg A., Santschi H.P., Sigg L., Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi, Ecotoxicol., 17, 372–386, 2008.
  • Miao A-J., Schwehr A. K., Xu C., Zhang S-J., Luo Z., Quigg A., Santschi H. P., The algal toxicity of silver engineered nanoparticles and detoxification by exopoly meric substances, Environ. Pollut., 157 3034–3041, 2009.
  • Sadiq I. M., Pakrashi S., Chandrasekaran N., Mukherjee A., Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp., J. Nanopart. Res., 13 (8), 32873299, 2011.
  • Miao A. J., Schwehr K. A., Xu C., Zhang S. J., Luo Z., Quigg A., Santschi P. H., The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances, Environ. Pollut., 157 (11), 3034-3041, 2009.
  • Dağlıoğlu Y., Öztürk Y. B., Desmodesmus multivariabilis’in bor partiküllerine maruz kalmada biyolojik birikiminin değerlendirilmesi, (Biodicon), Biol. Diversity Conserv., 9/3, 204-209, 2016.
  • Li N., Xia T., Nel A. E., The role of oxidative stress in ambient particulate matter-induced lung diseases and its implication in the toxicity of engineered nanoparticles, Free Radic. Biol. Med., 44,1689–99, 2008.
  • Zhu X., Wang J., Zhang X., Chang Y., Chen Y., The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio), 20 (19), 2009.