Geçiş Metal Kompleksi Katyon Heptaborat Yapılarının Sentezi ve Karakterizasyonu

Geçiş metali kompleks katyonları içeren heptaborat yapıları sentezlenmiş ve elementel analiz, erime noktası belirleme, FT-IR, TGA/DTA analizi, UV analizi ve x-ışını kırınımı (XRD) analiz yöntemleri kullanılarak karakterize edilmiştir. Heptaborat tuz yapılarının kızılötesi spektrumlarında, geçiş metali kompleksinin varlığını gösteren (-M-N)phen ve (-M-N)pyrd gerilme titreşimlerinin pikleri gözlendi. Heptaborat yapısının karakteristik titreşimleri olarak, yapılarda bulunan B-OH bağlarının -OH pikleri ve yapılarda dört trigonal borat molekülünün varlığını doğrulayan asimetrik ve simetrik gerilme titreşimleri keskin pikler olarak ortaya çıkmıştır. Geçiş metalli kompleks katyonları ile heptaborat tuz yapılarının termal analiz ayrışma eğrilerinin benzer olduğu gözlendi. Moleküllerin benzer bozunma özelliklerine bağlı olarak tüm yapılarda koordinasyon küresi dışında bulunan hidrat sularının tek bir adımda yapılardan uzaklaştığı görülmektedir. Heptaborat tuz yapılarının ikinci bozunma basamağı olarak borat halkalarındaki -OH gruplarının tüm yapılarda su buharı halinde uzaklaşmasına atfedilebilecek miktarlarda su kaybı tespit edilmiştir. Bu bozunma adımının tüm yapılarda tek adımda gerçekleştiği ve ilgili deneysel teorik kütle kayıplarının birbiri ile uyumlu olduğu görülmüştür. Metal katyon kompleksli heptaborat tuz yapılarının son bozunma aşaması olarak organik ligandların yanarak bozunması gözlendi. Kaydedilen toz x-ışını kırınım modellerinden heptaborat halkalarına ait pikler gözlenirken, elektronik geçiş verileri de metal katyon kompleksinin oktahedral geometride olduğunu desteklemektedir.

Synthesis and Characterization of Transition Metal Complex Cation Heptaborate Structures

Heptaborate structures with transition metal complex cations were synthesized and characterized using elemental analysis, melting point determination, FT-IR, TGA/DTA analysis, UV analysis, x-ray diffraction (XRD) analysis methods. In the infrared spectra of heptaborate salt structures, peaks of (-M-N)phen and (-M-N)pyrd stretching vibrations, which indicate the presence of transition metal complex, were observed. As the characteristic vibrations of the heptaborate structure, the -OH peaks of the B-OH bonds present in the structures and the asymmetric and symmetrical stretching vibrations, which confirm the presence of four trigonal borate molecules in the structures, appeared as sharp peaks. It was observed that the thermal analysis decomposition curves of heptaborate salt structures with transition metal complex cations were similar. Depending on the similar degradation characteristics of the molecules, it is seen that the hydrate waters settled outside the coordination sphere in all structures move away from the structures in a single step. As the second degradation step of heptaborate salt structures, the removal of water in amounts that can be attributed to the removal of -OH groups in the borate rings in the form of water vapor in all structures was detected. It was seen that this degradation step took place in a single step in all structures and the related experimental theoretical mass losses were compatible with each other. Combustion degradation of organic ligands was observed as the final degradation step of heptaborate salt structures with metal cation complexes. While peaks belonging to heptaborate rings were observed from the recorded powder x-ray diffraction patterns, electronic transition data also supported that the metal cation complex was in octahedral geometry.

___

  • [1] Schubert, D. M. (2003). Borates in Industrial Use. In H.W., Roesky, & D. A., Atwood (Eds.). Group 13 Chemistry III. Structure and Bonding (Vol. 105, pp. 1-40). Springer. https://doi.org/10.1007/3-540-46110-8_1.
  • [2] Beckett, M. A., Bland, C. C., Horton, P. N., Hursthouse, M. B., & Varma, K. S. (2007). Supramolecular structures containing ‘isolated’ pentaborate anions and nonmetal cations: Crystal structures of [Me3NCH2CH2OH] [B5O6(OH)4] and [4-MepyH,4-Mepy][B5O6(OH)4]. Journal of Organometallic Chemistry, 692(13), 2832- 2838. https://doi.org/10.1016/j.jorganchem.2007.02.038.
  • [3] Brown, I. D., O’Keeffe, M., & Navrotsky, A. (1981). Structure and Bonding in Crystals. Academic Press. https://doi.org/10.1016/B978-0-12-525101-3.X5001-3.
  • [4] Schindler, M., & Hawthorne, F. C. (2001). A bond-valence approach to the structure, chemistry and paragenesis of hydroxy-hydrated oxysalt minerals. I. Theory. Canadian Mineralogist, 39(5), 1225-1242. https://doi.org/10.2113/gscanmin.39.5.1225.
  • [5] Schindler, M., & Hawthorne, F. C. (2001). A bond-valence approach to the structure, chemistry and paragenesis of hydroxy-hydrated oxysalt minerals. II. Crystal structure and chemical composition of borate minerals. Canadian Mineralogist, 39(5), 1243-1256. https://doi.org/10.2113/gscanmin.39.5.1243.
  • [6] Schindler, M., & Hawthorne, F. C. (2001). A bond-valence approach to the structure, chemistry and paragenesis of hydroxy-hydrated oxysalt minerals. III. Paragenesis of borate minerals. Canadian Mineralogist, 39(5), 1257-1274. https://doi.org/10.2113/gscanmin.39.5.1257.
  • [7] Cook Jr., W. R., & Jaffe H. (1957). The crystallographic, elastic and piezoelectric properties of ammonium pentaborate and potassium pentaborate. Acta Crystallographica. 10, 705-707. https://doi.org/10.1107/ S0365110X57002431.
  • [8] Touboul, M., & Betourne, E. (1993). LiB2O3(OH)·H2O as precursor of lithium boron oxide LiB2O3.5: Synthesis and dehydration process. Solid State Ionics, 63-65, 340-345. https://doi.org/10.1016/0167-2738(93)90126-N.
  • [9] Akella, A., & Keszler, D. A. (1995). Structure and Eu2+ luminescence of dibarium magnesium orthoborate. Materials Research Bulletin, 30(1), 105-111. https://doi. org/10.1016/0025-5408(94)00113-8.
  • [10] Dotsenko, V. P., Efryushina, N. P., & Berezovskaya, I. V. (1996). Luminescence properties of GaBO3:Bi3+. Materials Letters, 28(4-6), 517-520. https://doi. org/10.1016/0167-577X(96)00114-0
  • [11] Soler-Illia, G. J. D. A., Sanchez, C., Lebeau, B., & Patarin, J. (2002). Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chemical Reviews, 102(11), 4093-4138. https://doi.org/10.1021/cr0200062.
  • [12] Yang, S., Li, G., Tian, S., Liao, F., & Lin, J. (2007). Synthesis and structure of [C2H10N2][B5O8(OH)]: A nonmetal pentaborate with nonlinear optical properties. Crystal Growth & Design, 7(7), 1246-1250. https://doi. org/10.1021/cg0606794.
  • [13] Liu, H. X., Liang, Y. X., & Jiang, X. (2008). Synthesis, crystal structure and NLO property of a nonmetal pentaborate [C6H13N2][B5O6 (OH) 4]. Journal of Solid State Chemistry, 181(12), 3243-3247. https://doi. org/10.1016/j.jssc.2008.07.020.
  • [14] Sızır, Ü., Yurdakul, Ö., Köse, D. A., & Akkurt, F. (2019). Novel non-metal cation (NMC) pentaborate salts of some amino acids. Molecules, 24(15), 2790. https://doi.org/10.3390/molecules24152790.
  • [15].Liu, W. F., Su, Z. M., Jia, Z., & Yang, G. Y. (2019). Syntheses, structures and characterizations of two new polyborates containing heptaborate sub-clusters. Journal of Cluster Science, 30(4), 1139-1144. https:// doi.org/10.1007/s10876-019-01577-w.
  • [16] Merlino, S., & Sartori, F. (1971). Ammonioborite: Newborate polyion and its structure. Science, 171(3969), 377- 379. https://doi.org/10.1126/science.171.3969.377.
  • [17] Schubert, D. M., Visi, M. Z., Khan, S., & Knobler, C. B. (2008). Synthesis and structure of a new heptaborate oxoanion isomer: B7O9(OH)52-. Inorganic Chemistry, 47(11), 4740-4745. https://doi.org/10.1021/ic800068t.
  • [18] Beckett, M. A., Horton, P. N., Coles, S. J., Kose, D. A., & Kreuziger, A. M. (2012). Structural and thermal studies of non-metal cation pentaborate salts with cations derived from 1, 5-diazobicyclo [4.3.0]non-5- ene, 1, 8-diazobicyclo [5.4.0]undec-7-ene and 1, 8-bis (dimethylamino) naphthalene. Polyhedron, 38(1), 157- 161. https://doi.org/10.1016/j.poly.2012.02.031.
  • [19] Sızır, Ü., Yurdakul, Ö., Köse, D. A., & Içten, O. (2020). Zwitterionic amino acids as precursors for nonmetal cation pentaborate salts. Journal of the Chinese Chemical Society, 67(10), 1849-1855. https://doi. org/10.1002/jccs.202000056.
  • [20] Schubert, D. M., Smith, R. A., Visi, M. Z. (2003). Studies of crystalline nonmetal borates. Glass Technology, 44(2), 63-70. Retrieved from https://www.ingentaconnect.com/content/sgt/gt/2003/00000044/00000002/ art00006#trendmd-suggestions.
  • [21] Köse, D. A., Beckett, M. A., Çolak, N. (2012). Synthesis, spectroscopic and thermal characterization of nonmetal cation (nmc) pentaborates salts containing cations derived from histidine and arginine. Hacettepe Journal of Biology and Chemistry, 40(3), 219-225. Retrieved from https://dergipark.org.tr/en/pub/hjbc/ issue/61882/926041.
  • [22] Schubert, D. M., Visi, M. Z., Knobler, C. B. (2000). Guanidinium and ımidazolium borates containing the first examples of an ısolated nonaborate oxoanion: [B9O12(OH)6]3-. Inorganic Chemistry, 39(11), 2250- 2251. https://doi.org/10.1021/ic000217u.
  • [23] Yang, S., Li, G., Tian, S., Liao, F., & Lin, J. (2007). Synthesis and structure of [C2H10N2][B5O8(OH)]: a nonmetal pentaborate with nonlinear optical properties. Crystal Growth & Design, 7(7), 1246-1250. https://doi. org/10.1021/cg0606794.
  • [24] Köse, D. A., Yurdakul, Ö., Şahin, O., & Öztürk, Z. (2017). The new metal complex templated polyoxoborate(s) (POB(s)) structures. Synthesis, structural characterization, and hydrogen storage capacities. Journal of Molecular Structure, 1134, 806-813. https://doi.org/10.1016/j.molstruc.2017.01.010.
  • [25] Altahan, M. A., Beckett, M. A., Coles, S. J., & Horton, P. N. (2020). Oxidopolyborate anions templated by transition-metal complex cations: Selfassembled syntheses and structural studies (XRD) of [Co(NH3)6]2[B4O5(OH)4]3·11H2O, [Ni(phen)3] [B7O9(OH)5].5H2O and [Zn(dac)2(H2O)2] [B7O9(OH)5]·H2O. Journal of Molecular Structure, 1200, 127071. https://doi.org/10.1016/j. molstruc.2019.127071.
  • [26] Beckett, M. A. (2016). c. Coordination Chemistry Reviews, 323, 2-14.
  • [27] Wang, Y., & Pan, S. (2016). Recent development of metal borate halides: Crystal chemistry and application in second-order NLO materials. Coordination Chemistry Reviews, 323, 15-35. https://doi.org/10.1016/j. ccr.2015.12.008.
  • [28] Liu, Z. H., & Li, L. Q. (2006). A new hydrated cesium heptaborate Cs2 [B7O9 (OH)5]: Synthesis and crystal structure. Crystal Growth & Design, 6(6), 1247-1249. https://doi.org/10.1021/cg0503200.
  • [29] Altahan, M. A., Beckett, M. A., Coles, S. J., & Horton, P. N. (2015). A new polyborate anion, [B7O9(OH)6]3−: Self assembly, XRD and thermal properties of s-fac- [Co(dien)2][B7O9(OH)6]· 9H2O. Inorganic Chemistry Communications, 59, 95-98. https://doi.org/10.1016/j.inoche.2015.07.011.
  • [30] Munirathnam, B., & Madhavan, J. (2009). Investigations on the structural, mechanical and photoconductive studies of pure and lanthanum doped potassium pentaborate single crystals. Indian Journal of Science and Technology, 2(2), 44-45. https://doi.org/10.17485/ijst/2009/v2i2.8.
  • [31] Chen, C. A., Pan, R., & Yang, G. Y. (2020). Syntheses and structures of a new 2D layered borate and a novel 3D porous-layered aluminoborate. Dalton Transactions, 49(12), 3750-3757. https://doi.org/10.1039/ C9DT03846A.
  • [32] Huang, J. H., Jin, C. C., Xu, P. L., Gong, P., Lin, Z., Cheng, J. W., & Yang, G. Y. (2019). Li2CsB7O10(OH)4: A deep-ultraviolet nonlinear-optical mixed-alkaline borate constructed by unusual heptaborate anions. Inorganic Chemistry, 58(3), 1755-1758. https://doi.org/10.1021/acs.inorgchem.8b03495.
  • [33] Xu, C., Hedin, N., Shi, H. T., & Zhang, Q. F. (2014). A semiconducting microporous framework of Cd 6 Ag 4 (SPh) 16 clusters interlinked using rigid and conjugated bipyridines. Chemical Communications, 50(28), 3710- 3712. https://doi.org/10.1039/C3CC49660K.z.