Characterization of W2B nanocrystals synthesized by mechanochemical method

Characterization of W2B nanocrystals synthesized by mechanochemical method

In this study; W2B nanocrystals were synthesized with B2 O3 /Mg/WO3 starting materials via mechanochemical method. Starting materials were mixed according to the reaction stoichiometry and reduction processes were performed in a planetary ball mill under Argon gas atmosphere. Phase and morphology structure of particles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy with energy-dispersive X-ray spectroscopy (TEM/EDX) and the specific surface area was measured by Brunauer-Emmet-Teller (BET) theory. The effect of milling period and molar ratios of starting powders were investigated in detail. Results showed that W2 B nanocrystals were obtained successfully without different tungsten compounds after 30 h milling and purification in 2 M HCl solution. Coaxial/spherical shaped and agglomerated W2 B nanocrystals were observed by microstructural examinations. Crystallite size and specific surface area of the W2 B nanocrystals were determined as 13.61 nm and 18 m2 /g respectively.

___

  • [1] Li Q., Zhou D., Zheng W., Ma Y., Chen C., Global structural optimization of tungsten borides, Phys. Rev. Lett., 110 (13), 136403, 2013.
  • [2] Woods H. P., Jr. Wawner F. E., Fox G. B., Tungsten diboride: Preparation and structure, Science, 151 (3706), 75, 1966.
  • [3] Peshev P., Bliznakov G., Leyarovska L., On the preparation of some chromium, molybdenum and tungsten borides, J. Less Common Met., 13 (2), 241– 247, 1967.
  • [4] Armas B., Trombe F., Chemical vapour deposition of molybdenum and tungsten borides by thermal decomposition of gaseous mixtures of halides on a solar “front chaud”, Solar Energy, 15 (1), 67–73, 1973.
  • [5] Tsirlin A. M., Khodov G. Ya., Zhigach A. F. Rabinovich R. A. Guzhov V. P., The electrical resistance of boron and of tungsten borides in boron filaments, J. Less Common Met., 67 (1), 137–141, 1979.
  • [6] Ellison E. G., Boone D. H., Some mechanical properties of boron-tungsten boride filaments, J. Less Common Met., 13 (1), 103–111, 1967.
  • [7] Itoh H., Matsudaira T., Naka S., Hamamoto H., Obayashi M., Formation process of tungsten borides by solid state reaction between tungsten and amorphous boron, J. Matter. Sci., 22 (8), 2811-2815, 1987.
  • [8] Radev D., Zahariev Z., Oxidation stability of B4 C- Mex By , composite materials, J. Alloys Compd., 197 (1), 87–90, 1993.
  • [9] Otani S., Ishizawa Y., Preparation of WB2- x single crystals by the floating zone method, J. Cryst. Growth, 154 (1), 81-84, 1995.
  • [10] Okada S., Kudou K., Lundström T., Preparations and some properties of W2 B, δ-WB and WB2 crystals from high-temperature metal solutions, Jpn. J. Appl. Phys., 34 (1), 226, 1995.
  • [11] Gostishchev V. V., Boiko V. F., Pinegina N. D., Magnesiothermal synthesis of W–WB powders in ionic melts”, Theor. Found. Chem. Eng, 43 (4), 468–472, 2009.
  • [12]. Mohammadi R., Lech A. T., Xie M., Weaver B. E., Yeung M. T., Tolbert S. H., Kaner R. B., Tungsten tetraboride, an inexpensive superhard material, Proc. Nation. Acad. Sci., 108 (27), 10958–62, 2011.
  • [13] Yeh C. L., Wang H. J., Preparation of tungsten borides by combustion synthesis involving borothermic reduction of WO3 , Ceram. Int., 37 (7), 2597–2601, 2011.
  • [14] Yazici S., Derin B., Effects of process parameters on tungsten boride production from WO3 by self-propagating high temperature synthesis, Matter. Sci. Eng. B, 178 (1), 89–93, 2013.
  • [15] Yazici S., Derin B., Production of tungsten boride from CaWO4 by self-propagating high-temperature synthesis followed by HCl leaching, Int. J. Refract. Met. Hard Mater., 29 (1), 90–95, 2011.
  • [16] Khor K. A., Yu L. G., Sundararajan G., Formation of hard tungsten boride layer by spark plasma sintering boriding, Thin Solid Films, 478 (1–2), 232–237, 2005.
  • [17] Usta M., Ozbek I., Ipek M., Bindal C., Ucisik A. H., The characterization of borided pure tungsten, Surf. Coat. Technol., 194 (2–3), 330–334, 2005.
  • [18] Sugiyama S., Taimatsu H., Mechanical properties of WC–WB–W2 B composites prepared by reaction sintering of B4 C–W–WC powders, J. Eur. Ceram., Soc., 24 (5), 871–876, 2004.
  • [19] Dash T., Nayak B. B., Preparation of multi-phase composite of tungsten carbide, tungsten boride and carbon by arc plasma melting: characterization of melt-cast product, Ceram. Int., 42 (1), 445–459, 2016.
  • [20] Stadler S., Winarski R. P., MacLaren J. M., Ederer D. L., vanEk J., Moewes A., Electronic structures of the tungsten borides WB, W2 B and W2 B5 , J. Electron. Spectrosc. Relat. Phenom., 110–111, 75–86, 2000.
  • [21] Ip K., Khanna R., Norton D. P., Pearton S. J., Ren F., Kravchenko I., Kao C. J., Chi G. C., Thermal stability of W2 B and W2 B5 contacts on ZnO, Appl. Surf. Sci., 252 (5), 1846–1853, 2005.
  • [22] Kayhan M., Hildebrandt E., Frotscher M., Senyshyn A., Hofmann K., Alff L., Albert B., Neutron diffraction and observation of superconductivity for tungsten borides, WB and W2 B4 Solid State Sci., 14 (11–12), 1656–1659, 2012.
  • [23] Feng S. Q., Guo, F., Li J. Y., Wang Y. Q., Zhang L. M., Cheng X. L., Theoretical investigations of physical stability, electronic properties and hardness of transition-metal tungsten borides WBx (x = 2.5, 3), Chem. Phys. Lett., 635, 205–209, 2015.
  • [24] Chong X. Y., Jiang Y. H., Zhou R., Feng J., Stability, chemical bonding behavior, elastic properties and lattice thermal conductivity of molybdenum and tungsten borides under hydrostatic pressure, Ceram. Int., 42 (2), 2117–2132, 2016.
  • [25] Iizumi K, Kudaka K, Maezawa D, Sasaki T., Mechanochemical synthesis of chromium borides, J. Ceram. Soc. Jpn., 107 (1245), 491–493, 1999.
  • [26] Welham N. J., Formation of nanometric TiB2 from TiO2 , J. Am. Ceram. Soc., 83 (5), 1290–1292, 2000.
  • [27] Kudaka K., Iizumi K., Sasaki T., Okada S., Mechanochemical synthesis of MoB2 and Mo2 B5 , J. Alloys Compd., 315 (1–2), 104–107, 2001.
  • [28] Kudaka K., Iizumi K., Izumi H., Sasaki T., Synthesis of titanium carbide and titanium diboride by mechanochemical displacement reaction, J. Mater. Sci. Lett., 20 (17), 1619–1622, 2001.
  • [29] Iizumi, K., Sekiya, C., Okadac, S., Kudou, K., Shishido, T., Mechanochemically assisted preparation of NbB2 powder, J. Eur. Ceram. Soc., 26 (4–5), 635–638, 2006.
  • [30] Kim J. W., Shim J. H., Ahn J. P., Cho Y. W., Kim, J. H., Oh, K. H., “Mechanochemical synthesis and characterization of TiB2 and VB2 nanopowders, Mater. Lett., 62 (16), 2461–2464, 2008.
  • [31] Jiang X., Trunov M. A., Schoenitz M., Dave R. N., Dreizin E. L., Mechanical alloying and reactive milling in a high energy planetary mill, J. Alloys Compd., 478 (1–2), 246–251, 2009.
  • [32] Akgün B., Çamurlu H. E., Topkaya Y., Sevinç N., Mechanochemical and volume combustion synthesis of ZrB2 , Int. J. Refract. Met. Hard Mater., 29 (5), 601- 607, 2011.
  • [33] Çamurlu H. E., Preparation of single phase molybdenum boride, J. Alloys Compd., 509 (17), 5431– 5436, 2011.
  • [34] Balcı O., Ağaoğulları D., Duman İ., Öveçoğlu, M. L., Carbothermal production of ZrB2 –ZrO2 ceramic powders from ZrO2 –B2 O3 /B system by high-energy ball milling and annealing assisted process, Ceram. Int., 38 (3), 2201-2207, 2012.
  • [35] Ağaoğulları D., Duman İ., Öveçoğlu M. L., Synthesis of LaB6 powders from La2 O3 , B2 O3 and Mg blends via a mechanochemical route, Ceram. Int., 38 (8), 6203–6214, 2012.
  • [36] Balcı Ö., Ağaoğulları D., Duman İ., Öveçoğlu M. L., Synthesis of CaB6 powders via mechanochemical reaction of Ca/B2 O3 blends, Powder Tech., 225, 136– 142, 2012.
  • [37] Shao J., Xiao X., Fan X., Chen L., Zhu H., Yu S., Gong Z., et al., A low temperature mechanochemical synthesis and characterization of amorphous Ni–B ultrafine nanoparticles, Mater. Lett., 109, 203–206, 2013.
  • [38] Torabi O., Naghibi S., Golabgir M. H., Tajizadegan H., Jamshidi A., Mechanochemical synthesis of NbC– NbB2 nanocomposite from the Mg/B2 O3 /Nb/C powder mixtures, Ceram. Int., 41 (4), 5362–5369, 2015.
  • [39] Jafari M., Tajizadegan H., Golabgir M. H., Chami A., Torabi O., Investigation on mechanochemical be- havior of Al/Mg–B2 O3 –Nb system reactive mixtures to synthesize niobium diboride, Int. J. Refract. Met. Hard Mater., 50, 86-92, 2015.
  • [40] Torabi O., Ebrahimi-Kahrizsangi R., Golabgir M. H., Tajizadegan H., Jamshidi A., Reaction chemistry in the Mg–B2 O3 –MoO3 system reactive mixtures, Int. J. Refract. Met. Hard Mater., 48, 102–107, 2015.
  • [41] C. Suryanarayana, Mechanical alloying and milling, Progress in Materials Science 46 1-184, 2001.
  • [42] Coşkun S., Öveçoğlu M. L., Room-temperature mechanochemical synthesis of W2 B5 powders, Metall. Mater. Trans. A, 44 (4), 1805–1813, 2012.
  • [43] Nasiri-Tabrizi B., Ebrahimi-Kahrizsangi R., Bahrami-Karkevandi M., Effect of excess boron oxide on the formation of tungsten boride nanocomposites by mechanically induced self-sustaining reaction, Ceram. Int., 40 (9), 14235–14246, 2014.
  • [44] Bahrami-Karkevandi M., Ebrahimi-Kahrizsangi R., Nasiri-Tabrizi B., Formation and stability of tungsten boride nanocomposites in WO3 –B2 O3 –Mg ternary system: Mechanochemical effects, Int. J. Refract. Met. Hard Mater., 46, 117–124, 2014.