Boron isotopes enrichment via continuous annular chromatography

Boron isotopes enrichment via continuous annular chromatography

Boron has two stable isotopes namely 10B and 11B isotopes. The large cross section of 10B isotope for thermal neutrons is used for reactor control in nuclear fission reactors. The thermal neutrons absorption cross sections of pure 10B and 11B are 3837 and 0.005 barns respectively. In the literature, amongst others, batch elution chromatography techniques are reported for 10B isotope enrichment. This work focuses on continuous chromatographic 10B isotope separation system via continuous annular chromatography (CAC) where isotope enrichment from boric acid solution is studied. CAC is slurry packed with commercially available n-methyl glucamine functionalized boron-specific anion exchange resin (Diaion CRB03 - Mitsubishi). The nominal height of AISI 316 stainless steel pipe outer and inner cylinders of CAC is 200 cm. The outside diameter of column is 20 cm and inside diameter of inner column is 14 cm. The liquid level above the top of the resin is monitored with an ultrasonic sensor. Its level is kept between the set values by air injection from the top of the column. For this purpose, the liquid level signals received from the ultrasonic sensor is fed to a proportional controller unit so as to adjust the column head pressure by regulating air injection pressure and its flow rate. Dilute aqueous nitric acid solutions were used as the eluent. Eluent 10B and 11B isotope ratios are measured by ICP-MS spectrometer (Perkin Elmer, ELAN 9000). It is determined that depending on the operation parameters 10B isotope ratio can be increased over 27% in a single pass mode operation of the present CAC apparatus

___

  • [1] Skoog D. A., West D. M., Holler F. J., Crouch S. R., Fundamentals of analytical chemistry, 8th edition, Thomson-Brooks Cole, Belmont, 2003.
  • [2] Braithwaite A., Smith F. J., Chromatographic meth￾ods, 5 th edition, Blackie, London, 1996.
  • [3] Sewell P., Clarke B., Chromatographic separations, Wiley, New York, 1988.
  • [4] Jonsson J. A., Chromatographic theory and basic principles, Marcel Dekker, New York, 1987.
  • [5] Firestone R. B., Shirley V. S., Table of isotopes, vol. 2, 8th edition, John Wiley & Sons, New York, 1998.
  • [6] Mughabghab S. F., Atlas of neutron resonances: resonance parameters and thermal cross sections, 5 th edition, Elsevier, Amsterdam, 2006.
  • [7] Lee J., Ion exchange column modeling of borates for a multicomponent system, Ph.D. Thesis, Oklaho￾ma State University, USA, 2001.
  • [8] Greenwood N. N., Thomas B. S., The chemistry of boron, Ann Arbor-Humprey Science Publishers, Lon￾don, 1973.
  • [9] Ivanov V. A., Katalnikov S. G., Physico-chemical and engineering principles of boron isotopes separa￾tion by using BF3-anisole•BF3 system, Separation Science and Technology, 36, 1737 - 1768, 2001.
  • [10] Yoneda Y., Uchijima T., Makishima S., Separation of boron isotopes by ion exchange, Journal of Physical Chemistry, 63, 2057-2058, 1959.
  • [11] Sakuma Y., Aida M., Okamota M., Kakihana H., Boron isotope separation by ion exchange chroma￾tography using weakly basic anion exchange resin, Bulletin of Chemical Society of Japan, 53, 1860-1863, 1980.
  • [12] Fujii Y., Aida M., Okamoto M., Oi T., A theoreti￾cal study of isotope separation by displacement chro￾matography, Separation Science and Technology, 20, 377-392, 1985.
  • [13] Oi T., Shimazaki H., Ishii R., Hosoe M., Boron iso￾tope fractionation in liquid chromatography with boron￾specific resins as column packing material, Separation Science and Technology, 32, 1821-1834, 1997.
  • [14] Sonoda A., Makita Y., Hirotsu T., Boron isotope fractionation in column chromatography with glu￾camine type resins, Journal of Nuclear Science and Technology, 43, 437–440, 2006.
  • [15] Musashi M., Oi T., Matsuo M., Nomura M., Col￾umn chromatographic boron isotope separation at 5 and 17 MPa with diluted boric acid solution, Journal of Chromatography A, 1201, 48–53, 2008.
  • [16] Sharma B. K., Rajamani P., Mathur P. K., Ion ex￾change chromatographic separation and MS analysis of isotopes of boron, Solvent Extraction and Ion Ex￾change, 16, 1321-1340, 1998.
  • [17] Martin A. J. P., Discussions of the Faraday society 7, 332-336, 1949.
  • [18] Begovich J. M., Sisson W. G., A rotating annular chromatograph for continuous separations, American Institute of Chemical Engineers, 30, 705-710, 1984.
  • [19] Canon R. M., Sisson W. G., Operation of an im￾proved continuous annular chromatograph, Journal of Liquid Chromatography, 1, 427-441, 1978.
  • [20] Fox J. B., Calhoun R. C., Eglinton W. J., Continu￾ous chromatography apparatus. I. Construction, Jour￾nal of Chromatography, 43, 48-54, 1969.
  • [21] Bart H. J., Messenböcl R. C., Byers C. H., Prior A., Wolfgang J., Continuous chromatographic separation of fructose, mannitol and sorbitol, Chemical Engineer￾ing and Processing, 35 ,459-471, 1996.
  • [22] Byers C. H., Sisson W. G., DeCarli II J. P., Carta G., Sugar separations on a pilot scale by continuous annular chromatography, Biotechnology Progress, 6, 13-20, 1990.
  • [23] Lahoda E. J., Lin C. Y., Battaglia J. A., Impink A. J., Assignee: Westhinghouse Electric Corpora￾tion, “Boron Isotope Separation Using Continuous Ion Exchange Chromatography”, US Patent Number: 5,443,732, Patent Date: 22 August 1995.
  • [24] Vogel J. H., Nguyen H., Pritschet M., Van Wegen R., Konstantinov K., Continuous annular chromatogra￾phy: General characterization and application for the isolation of recombinant protein drugs, Biotechnology and Bioengineering, 80, 5 – 13, 2002.
  • [25] Majors R. E., Advances in HPLC column packing design, LCGC LC ColumnTechnology Supplement, 9, 8 – 12, 2004.
  • [26] Sonoda A., Makita Y., Ooi K., Takagi N., Hirotsu T., pH-dependence of the fractionation of boron isotopes with N-methyl-D-glucamine resin in aqueous solution systems, Bulletin of the Chemical Society of Japan, 73, 1131-1133, 2000.
  • [27] Kakihana H., Kotaka M., Satoh S., Nomura M., Okamoto M., Fundamental studies on the ion-ex￾change separation of boron isotopes, Bulletin of the Chemical Society of Japan,50, 158-163, 1977.
  • [28] Al-Ammar A., Reitznerova E., Barnes R. M., Im￾proving boron isotope ratio measurement precision with quadrupole inductively coupled plasma-mass spec￾trometry, Spectrochimica Acta B, 55, 1861-186, 2000.
  • [29] Zhou L., Wu K., Qin W., Wang G., Fu D., Fei, W., Separation characteristics of boron isotopes in contin￾uous annular chromatography, Science China Chem￾istry, 58, 1187-1192, 2015.