Bor nitrür nanoplateletlerin ve nano Ag takviyeli yapısal yapıştırıcıların kayma dayanımı

Bu çalışmada, hava araçlarında kullanılan farklı bileşenli yapıların hibrid nanoparçacık takviyesiyle epoksi yapıştırıcıların kayma dayanımları araştırılmıştır. 8 kat 0°/90° düz dokuma karbon kumaştan el yatırma tekniği vakum yardımıyla 1,7±0,1 mm kalınlığında üretilmiştir. Üretilen karbon elyaf takviyeli epoksi kompozitler (KETEK) ile 2024-T3 Alüminyum (Al) levhalar modifiye edilmiş epoksi yapıştırıcılarla tek taraflı bindirmeli bağlantı olarak ASTM D1002-10 standartlarına göre test edilmiştir. Al 2024-T3 malzeme ASTM D3933-98 fosforik asit anotlama ve KETEK numuneler ise ASTM D2093-03 standartlarına göre yüzey hazırlama yöntemleri kullanılmıştır. Epoksi reçineye ağırlıkça %0,5 Bor Nitrür Nanoplateler (BNNPs) ile ağırlıkça farklı oranlarda (%0,5, 1,0 ve 1,5) nano gümüş (Ag) parçacıkları ilave edilmiştir. Hibrid nanoyapıştırıcılar ile referans numunelerin kayma dayanımları, elastik modülleri ve kayma şekil değişimleri karşılaştırılmıştır. Hibrid nanoyapıştırıcı sistemlerin kırılma analizi, taramalı elektron mikroskobu (SEM) kullanılarak incelenmiştir. Farklı şekil ve boyutlardaki nanomalzemelerin kırık yüzeylerde, destekledikleri farklı enerji dağıtım mekanizmaları nedeniyle belirgin özellikler sunduğunu mikroyapıları ortaya çıkarmıştır. Modifiye edilmiş epoksi yapıştırıcıların termogravimetrik analizi (TGA) ile bozunma sıcaklıkları, termal kararlılığı ve kalan kütle miktarları karakterize edilmiştir.

Shear strength of boron nitride nanoplatelets and nano Ag reinforced structural adhesives

In this study, shear strength of epoxy adhesives with hybrid nanoparticle reinforcement of various component structures used in aircraft was investigated. 8 layer 0°/90° flat woven carbon fabric hand depositing technique vacuum system is produced with a thickness of 1.7 ± 0.1 mm. Produced carbon fibers reinforced epoxy composites (KETEK) and 2024-T3 Aluminum (Al) sheets were tested in accordance with ASTM D1002-10 standards as a one-sided overlap connection with modified epoxy adhesives. Al 2024-T3 material ASTM D3933-98 phosphoric acid anodization and KETEK samples were used according to ASTM D2093-03 standards. To the epoxy resin was added 0.5 wt. % Boron Nitride Nanoplatelets (BNNPs) and nano-silver (Ag) particles in different ratios (0.5, 1.0, and 1.5%) by weight. The shear strength, elasticity modulus and slip pattern changes of the hybrid nanoparticles and reference samples were compared. Fracture analysis of hybrid nanoadhesive systems was investigated using scanning electron microscopy (SEM). The microstructures revealed that nanomaterials with different shapes and dimensions provide distinct features on the fracture surfaces due to the different energy dissipation mechanisms, which they support. The thermogravimetric analysis (TGA) of the modified epoxy adhesives was characterized by decomposition temperatures, thermal stability and residual mass quantities.

___

  • [1] Bishopp J., 13 - Adhesives for Aerospace Structures, Handbook of Adhesives and Surface Preparation, S. Ebnesajjad, ed., William Andrew Publishing, Oxford, pp. 301-344, 2011.
  • [2] Vietri U., Guadagno L., Raimondo M., Vertuccio L., Lafdi,K., Nanofilled epoxy adhesive for structural aeronautic materials," Compos Part B-Eng, 61, 73-83, 2014.
  • [3] Pethrick R. A., Design and ageing of adhesives for structural adhesive bonding - A review, P I Mech Eng L-J Mat, 229 (5), 349-379, 2015.
  • [4] Kang J. H., Siochi E. J., Penner R. K., Turner, T. L., Enhanced adhesive strength between shape memory polymer nanocomposite and titanium alloy, Compos. Sci. Technol., 96, 23-30, 2014.
  • [5] Yaman B., Açıkbaş N. Ç., Dry sliding behaviour of boron waste reinforced epoxy matrix composites, Boron, 3 (2), 63-70, 2018.
  • [6] Spitalsky Z., Tasis D., Papagelis K., Galiotis C., Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties, Prog. Polym. Sci., 35 (3), 357-401, 2010.
  • [7] Hsiao K. T., Alms J., Advani S. G., Use of epoxy/multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites, Nanotechnology, 14 (7), 791-793, 2003.
  • [8] Jouyandeh M., Jazani O. M., Navarchian A. H., Saeb, M. R., High-performance epoxy-based adhesives reinforced with alumina and silica for carbon fiber composite/steel bonded joints J. Reinf. Plast. Comp., 35 (23), 1685-1695, 2016.
  • [9] Ghosh P. K., Kumar K., Preeti P., Rajoria M., Misra N., Superior dissimilar adhesive joint of mild steel and aluminium using UDM processed epoxy based TiO2 nano-filler composite adhesive, Compos. Part B-Eng., 99, 224-234, 2016.
  • [10] Reza Borghei H., Behjat B., Yazdani M., The impact of graphene nanoparticle additives on the strength of simple and hybrid adhesively bonded joints, J. Compos. Mater., 53 (23), 3335-3346, 2018.
  • [11] Ekrem M., Duzcukoglu H., Senyurt M. A., Sahin Ö. S., Avci A., Friction and wear performance of epoxy resin reinforced with boron nitride nanoplatelets, J. Tribol., 2017.
  • [12] Efeoğlu İ., Totik Y., Keleş A., Ersoy K., Durkaya G., Synthesis and investigation of structural-mechanical-tribological properties of c-BN based BN thin films, Boron, 2 (1), 11-17, 2017.
  • [13] Scarselli G., Corcione C., Nicassio F., Maffezzoli A., Adhesive joints with improved mechanical properties for aerospace applications, Int. J. Adhes. Adhes., 75, pp. 174-180., 2017.
  • [14] Neto A. S., da Cruz D. T. L., Avila A. F., Nano-modified adhesive by graphene: The single lap-joint case, Mater Res-Ibero-Am J., 16 (3), 592-596, 2013.
  • [15] York C. B., On bending-twisting coupled laminates, Compos. Struct., 160, 887-900, 2017.
  • [16] Ghosh P., Pathak A., Goyat M., Halder S., Influence of nanoparticle weight fraction on morphology and thermal properties of epoxy/TiO2 nanocomposite, J. Reinf. Plast. Comp., 31 (17), 1180-1188, 2012.
  • [17] Li J., Ma P. C., Chow W. S., To C. K., Tang B. Z., Kim J. K., Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes, Adv. Funct. Mater., 17 (16), 3207-3215, 2007.
  • [18] Gojny F. H., Wichmann M. H., Fiedler B., Schulte K., Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–a comparative study, Compos. Sci. Technol., 65 (15), 2300-2313, 2005.
  • [19] Ekrem M., fracture behavior of epoxy adhesives reinforced with carbon nanotubes and polyvinyl alcohol nanofibers in aluminum joints," PhD Dissertation, Selcuk University, Konya, 2015.
  • [20] Ekrem M., Ataberk N., Avcı A., Akdemir A., Improving electrical and mechanical properties of a conductive nano adhesive, J. Adhes. Sci. Technol., 31 (7), 699-712, 2017.
  • [21] Ekrem M., Avcı A., Effects of polyvinyl alcohol nanofiber mats on the adhesion strength and fracture toughness of epoxy adhesive joints, Composites Part B: Engineering, 138, 256-264, 2018.