Bor doplu CVD grafen üretimi ve yakıt pili performansı

Kimyasal Buhar Biriktirme (CVD) yöntemiyle üretilen grafen yapıların bor (B), kobalt (Co)-azot (N)- katkı maddeleri ile Proton Elektrolit Membran (PEM) yakıt pillerinde elektrokatalizör veya destek malzemesi olarak kullanılabilirliği incelenmiştir. Bor doplamada amonyum boran (H3N-BH3) doğrudan kullanılırken sodyum borhidrür (NaBH4) dolaylı olarak kullanılmıştır. Üretilen örnekler elektrokimyasal yöntemler yanında Taramalı Elektron Mikroskobu (SEM), Geçirimli Elektron Mikroskobu (TEM), X-ışını Fotoelektron Spektroskopisi (XPS), Raman ve XRD yöntemleri ile de tanımlanmıştır. Grafen örneklerin elektrokimyasal oksijen indirgeme reaksiyon (ORR) ölçümleri döner disk elektrot (RDE) yönetimiyle, geliştirilen elektrotların yakıt pili testleri 5 cm2 aktif alanda yakıt pili test sistemi ile yapılmıştır. Bor içerikli indirgeme yaklaşımı, yakıt pili testlerinde PtCo/B/grafen katalizör ile 3000 mA/cm2 seviyelerinde diğer yaklaşımların 3 katı ve üzeri akım yoğunluğu vermiştir.

Production of boron-dopped CVD graphene and fuel cell performance

Graphene, produced by chemical vapor deposition (CVD) and modified with boron (B), cobalt (Co) and nitrogen (N), was investigated as electrocatalyst and support material for proton exchange membrane (PEM) fuel cells. Ammonia borane (H3N-BH3) was used directly as doping agent while sodium borohydride (NaBH4) was used indirectly.  Samples were characterized, in addition to electrochemical methods, by scanning electron microscopy (SEM), X-ray photo-electron microscopy (XPS), Raman spectroscopy and XRD. While rotating disc electrodes (RDE) were used to characterize oxygen reduction reaction capacity of graphene electrodes, fuel cell testing was carried out with 5-cm2 active area single cell. Boron based reduction of catalysts, compare to other approaches, have resulted 3 times higher current density reaching 3000 mA/cm2 with PtCo/B/graphene catalyst in fuel cell testing.

___

  • [1] Rao C. N. R., Gopalakrishnan K., Govindaraj A., Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements, Nano Today, 9, 324-343, 2014.
  • [2] Wang H., Maiyalagan T., Wang X., Review on recent progress in nitrogen-doped Graphene: Synthesis, characterization, and its potential applications, Am. Chem. Soc., 2, 781−794, 2012.
  • [3] Li X. F., Lian K. Y., Liu L., Wu Y., Qiu Q., Jiang J., Deng M., vd, Unraveling the formation mechanism of graphitic nitrogen doping in thermally treated graphene with ammonia, Sci. Rep., 6, 23495, 2016.
  • [4] Yeh M. H., Li Y. S., Chen G. L., Lin L. Y., Li T.J., Chuang H. M., Hsieh C. Y., vd., Facile synthesis of boron-doped graphene nanosheets with hierarchical microstructure at atmosphere pressure for metal-free electrochemical detection of hydrogen peroxide, Electrochim. Acta, 172, 52-60, 2015.
  • [5] Zhao Y., Hu C., Hu Y., Cheng H., Shi G., Qu L., A versatile, ultralight, nitrogen-doped graphene framework,. Angew. Chem., 51, 11173–11388, 2012.
  • [6] Wu X., Wang Y., Yang P., The field emission properties from the pristine/B-doped graphene-C70 composite, Phys. Lett. A., 381 (24), 2004-2009, 2017.
  • [7] Panchakarla L. S., Govindaraj A., Rao C. N. R., Boron- and nitrogen-doped carbon nanotubes and graphene, Inorg. Chim. Acta, 363, 4163-4174, 2010. [8] Liao C., Zhang M., Niu L., Zheng Z., Yan F., Highly selective and sensitive glucose sensors based on organic electrochemical transistors with graphene-modified gate electrodes, J. Mater. Chem. B, 1, 3820-3829, 2013. [9] Agnoli S., Favarob M., Doping graphene with boron: a review of synthesis methods, physicochemical characterization, and emerging applications, Mater. Chem. A, 4, 5002-5025, 2016.
  • [10] Mazanek V., Matejkova S., Sedmidubsky D., Pumera M., Sofe Z., One step synthesis of B/N co-doped graphene as highly efficient electrocatalyst for oxygen reduction reaction-synergistic effect of impurities, Chem. Eur. J, 928-936, 2017.
  • [11] Zheng Y., Jiao Y., Ge L., Jaroniec M., Qiao S. Z., Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis, Angew. Chem., 125, 3192 –3198, 2013.
  • [12] Sheng Z. H., Gao H. L., Bao W. J., Wang F. B., Xia X. H., Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells, J. Mater. Chem., 22, 390-395, 2012.
  • [13] Jing L., Ping S., Zhigang N., Weilin X., Recent advances in heteroatom-doped metal-free electrocatalysts for highly efficient oxygen reduction reaction, Electrocatalysis, 6, 132–147, 2015.
  • [14] Dong F., Cai Y., Liu C., Liu J., Qiao J., Heteroatom (B, N and P) doped porous graphene foams for efficient oxygen reduction reaction electrocatalysis, Int. J. Hydrogen Energy, 43, 12661-12670, 2018. [15] Han J., Zhang Y., Niu F., Chen T., Liu J., Xu Y., Low-cost and highly efficient metal-free electrocatalysts for oxygen reduction reaction: Environment-friendly three-dimensional B, N Co-doped Graphene Aerogels, Electrocatalysis 10, 56–62, 2019.
  • [16] Sahoo M., Sreena K. P., Vinayan B. P., Ramaprabhu S., Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery, Mater. Res. Bull. 61, 383–390, 2015.
  • [17] Yang L., Jiang S., Zhao Y., Zhu L., Chen S., Wang X., Wu Q., vd., Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction, Angew. Chem. In. Ed. 50, 7132, 2011.
  • [18] Pullamsetty A., Subbiah M., Sundara R., Platinum on boron doped graphene as cathode electrocatalyst for proton exchange membrane fuel cells, Mater. Res. Bull., 40 (32), 10251-10261, 2015.
  • [19] Yang H. N., Lee D. C., Park K. W., Kim W. J., Platinum/boron doped graphene intercalated by carbon black for cathode catalyst in proton exchange membrane fuel cell, Energy, 89, 500-510, 2015. [20] Kepeniene V., Stagniunaite R., Tamasauskaite L., Norkus E., Investigation of the PtCo/graphene and PtCoRu/graphene Catalysts for Oxygen Reduction Reaction, ECS Transactions, 69 (17), 643-650, 2015.
  • [21] Yang S., Zhang F., Gao C., Xia J., Lu L., Wang Z., A sandwich-like PtCo-graphene/carbon dots/graphene catalyst for efficientmethanol oxidation, J. Electroanal. Chem., 802, 27–32, 2017.
  • [22] Holmes S. M., Balakrishnan P., Kalangi V. S., Zhang X., Hidalgo M. L., Ajayan P. M., Nair R. R., 2D crystals significantly enhance the performance of a working fuel Cell, Adv. Energy Mater., 7, 1601216, 2017.
  • [23] Yazıcı M. S., Azder M. A., Salihoglu Ö., Boyacı San F. G., CVD grown graphene as catalyst for acid electrolytes, Int. J. Hydrogen Energy., 43, 10710-10716 2018.
  • [24] Yazıcı M. S., Azder M. A., Salihoglu Ö., Boyazı San F. G., Ultralow Pt loading on CVD graphene for acid electrolytes and PEM fuel cells, Int. J. Hydrogen Energy., 43, 18572-18577 2018.
  • [25] Golberg D., Bando Y., Han W., Kurashima K., Sato T., Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction, Chem. Phys. Lett., 308, 337-342, 1999.
  • [26] Wang G., Li X., Wang Y., Zheng Z., Dai Z., Qi X., Liu L., vd., interlayer coupling behaviors of boron doped multilayer graphene, J. Phys. Chem. C, 121 (46), 26034-26043, 2017.
  • [27] Sit V., Geanangel R. A., Wendlandt W. W., Thermochimica, Acta 113, 379–382, 1987.