Yerel (Artvin-Şavşat) ve Tescilli Domates Çeşitlerinde Kuraklık Stresine Karşı Tolerans Seviyelerinin Araştırılması

Kuraklığın artmasıyla birlikte domates ürün kalitesinde ve ürün veriminde ciddi düşüşler meydana gelmektedir. Stresin sebep olduğu verim ve kalitedeki düşüşleri azaltmanın en önemli yollarından biri de bitkilerin kuraklıktan etkilenme şeklinin bilinmesi ve kuraklığa toleranslı çeşitlerin belirlenmesidir. Bu nedenle mevcut çalışmada Artvin-Şavşat (yerel) ve SC2121 (tescilli) domates çeşitlerinin farklı kuraklık uygulamalarına karşı oluşturdukları toleranslarının yanıtlarının araştırılması amaçlanmıştır. Bu amaç doğrultusunda, domates çeşitlerinde çimlenme oranı, kök uzunluğu, nispi su içeriği (NSİ), lipid peroksidasyonu (TBARS), hidrojen peroksit ($H_2O_2$), prolin, toplam klorofil ve karotenoid içerikleri gibi temel stres parametreleri incelenmiştir. Bulgulara göre, Şavşat ve SC2121 çeşitlerinde çimlenme oranı, kök boyu ve NSİ tüm polietilen glikol 6000 ($PEG_{6000}$) uygulamalarıyla birlikte kontrole kıyasla önemli derecede azaldığı ve bu azalışın Şavşat çeşidinde daha düşük olduğu saptanmıştır. Şavşat ve SC2121’in TBARS ve $H_2O_2$ içeriklerinin artan PEG konsantrasyonuna bağlı olarak önemli derecede arttığı, bu artışın Şavşat çeşidinde daha düşük olduğu tespit edilmiştir. Prolin içeriği tüm PEG uygulamalarıyla birlikte her iki domates çeşidinde kontrole göre arttığı görülmüştür. Bu artışın ise Şavşat çeşidinde daha düşük olduğu belirlenmiştir. Domates çeşitlerinin toplam klorofil ve karotenoid içerikleri %10 PEG uygulamasıyla önemli derecede azaldığı ve bu azalışın Şavşat çeşidinde daha düşük olduğu görülmüştür. Elde edilen veriler ışığında, Artvin-Şavşat domates çeşidinin kuraklığa daha toleranslı olduğu belirlenmiştir.

Investigation of Tolerance Levels Against Drought Stress in Local (ArtvinŞavşat) and Registered Tomato Varieties

Remarkable decreases perform in tomato product quaility and product yield with the increasing of drought. One of the most important way to reduce the decreases in yield and quality caused by stress is to know the plants are affected by drought and to determine drought-tolerant cultivars. Therefore, in the present study, it was aimed to investigate the tolerances of Artvin-Şavşat (landrace) and SC2121 (commercial) tomato cultivars in different drought applications. For this purpose, changes in basic stress parameters such as germination rate, root length, relative water content (RWC), lipid peroxidation (TBARS), hydrogen peroxide ($H_2O_2$), proline, total chlorophyll and carotenoid contents were determined in tomato cultivars. According to the findings, it was determined that the germination rate, root length and RWC significantly decreased with all polyethylene glycol 6000 ($PEG_{6000}$) applications in Şavşat and SC2121 cultivars compared to the control, and the decrease was lower in Şavşat cultivar. It was detected that TBARS and $H_2O_2$ contents of Şavşat and SC2121 significantly increased due to increasing PEG concentration, and the increase was lower in Şavşat cultivar. It was observed that the proline content increased with all PEG applications in both tomato cultivars compared to the control. It was determined that the increase was lower in Şavşat cultivar. In the light of the obtained data, it was determined that SC2121 was drought-sensitive and Artvin-Şavşat tomato cultivar was more drought- tolerant.

___

  • [1] Yordanov I., Velikova V., Tsonev, T. 2000. Plant responses of drought, acclimation, and stress tolerance. Photosynthetica, 38 (2): 71-186.
  • [2] Saruhan Guler N., Ozturk K., Sezgin A., Altuntas C., Kadioglu A., Terzi, R. 2021. Alpha lipoic acid application promotes water-deficit tolerance by modulating osmoprotectant metabolismrelated genes in maize. Russian Journal of Plant Physiology, DOI: 10.1134/S1021443721060042.
  • [3] Talbi S., Romero-Puertas M.C., Hernandez A., Terron L., Ferchichi,A., Sandalio L.M. 2004. Drought tolerance in a saharian plant oudneya africana: role of antioxidant defences. Environmental and experimental botany, 111: 114-126.
  • [4] Jaleel C.A., Manivannan P., Lakshmanan G.M.A., Gomathinayagam M., Panneerselvam, R. 2008. Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. Colloids and surfaces B: biointerfaces, 61 (2): 298- 303.
  • [5] Chaves M.M., Oliveira M.M. 2004. Mechanisms underlying plant resilience to water decits: prospects for water-saving agriculture. Journal of experimental botany, 55 (407): 2365-2384.
  • [6] Sofo A., Tuzio A.C., Dichio B., Xiloyannis C. 2005. Influence of water deficit and rewatering in the components of the ascorbate-glutathione cycle in four interspecic prunus hybrids. Plant science, 169 (2): 403- 412.
  • [7] Morales C.G., Pino M.T., Del Pozo A. 2013. Phenological and physiological responses to drought stress and subsequent rehydration cycles in two raspberry cultivars. Scientia Horticulturae, 162: 234-241.
  • [8] Reddy A.R., Chaitany K.V., Vivekanandan M. 2004. Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 161 (11): 1189-1202.
  • [9] Yordanov I., Velikova V., Tsonev T. 2003. Plant responses to drought and stress tolerance. Bulgarian Journal of Plant Physiology, (Special Issue), 187-206.
  • [10] Almansouri M., Kinet J.M., Lutts S. 2001. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil, 231 (2): 243-254.
  • [11] Hsiao T.C. 1973. Plant responses to water stress. Annual Review of Plant Physiology, 24 (1): 519-570.
  • [12] Foolad M.R., Lin G.Y. 1997. Genetic potential for salt tolerance during germination in Lycopersicon species. HortScience, 32 (2): 296-300.
  • [13] Mohaewsh O. 2016. Utilizing deficit rrigation to enhance growth performance and water use efficiency of eggplant in arid environments. Journal of Agricultural Science and Technology, 18 (1): 265-276.
  • [14] Gharibi S., Tabatabaei B.E.S., Saeid G., Goli S.A.H. 2016. Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea species. Applied Biochemistry and Biotechnology, 178 (4): 796-809.
  • [15] Altuntaş C., Terzi R. 2020. Dithiothreitol and PEG induced combined stress may affect the expressions of ABA aldehyde oxidase, sucrose synthase and proline metabolic genes in maize seedlings. Phyton, International Journal of Experimental Botany, DOI: 10.32604/phyton.2020.08919.
  • [16] Moustakas M., Sperdouli I., Kouna T., Antonopoulou C.I., Therios I. 2011. Exogenous proline induces soluble sugar accumulation and alleviates drought stress effects on photosystem ıı functioning of Arabidopsis thaliana leaves. Plant Growth Regulation, 65 (2): 315-325.
  • [17] Demiralay M., Altuntaş C., Sezgin A., Terzi R., Kadıoğlu A. 2017. Application of proline to root mediuis more effective for amelioration of photosynthetic damages as compared to foliar spraying or seed soaking in maize seedlings under short-term drought. Turkish Journal of Botany, 41: 649- 660.
  • [18] George S., Jato S.A., Siddiqui S.U. 2013. Genotypic differences against PEG simulated drought stress in tomato. Pakistan Journal of Botany, 45 (5): 1551-1556.
  • [19] Zdravkovic J., Jovanovic Z., Djordjevic M., Girek Z., Zdravkovic M., Stikic R. 2013. Application of stress susceptibility index for drought tolerance screening of tomato populations. Genetika, 45 (3): 679-689.
  • [20] Pervez M.A., Ayub C.M., Khan H.A., Shahid M.A., Ashraf I. 2009. Effect of drought stress on growth, yield and seed quality of tomato (Lycopersicon esculentum L.). Pakistan Journal of Agricultural Sciences, 46 (3): 174-178.
  • [21] Sivakumar R., Srividhya S. 2016. Impact of drought on flowering, yield and quality parameters in diverse genotypes of tomato (Solanum lycopersicum L.). Advances in Horticultural Science, 30 (1): 3-11.
  • [22] Ghorbanli M., Bakhshi Khanik G., Zakeri A. 2012. Investigation on the effects of water stress on antioxidant compounds of Linum usitatissimum L. Iranian Journal of Medicinal and Aromatic Plants Research, 27 (4): 647-658.
  • [23] Kabay T., Yekbun A.L.P. 2017. Kuraklık stresinin bazı yerli ve ticari domates çeşitlerinde bitki gelişimi üzerine etkileri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 27 (3): 387-395.
  • [24] Çelik Ö., Aya A., Atak Ç. 2017. Enzymatic and non-enzymatic comparison of two different industrial tomato (Solanum lycopersicum) varieties against drought stress. Botanical Studies, 58 (1): 1-13.
  • [25] Anonymous, 1993. “International Seed Testing Association. International Rules for Seed Testing”, Seed Science and Technology, 21 supplement.
  • [26] Basha P.O., Sudarsanam G., Reddy M.M.S., Sankar S. 2015. Effect of PEG induced water stress on germination and seedling development of tomato germplasm. International Journal of Recent Scientific Research, 6 (5): 4044-4049.
  • [27] Castillo F.J. 1996. Antioxidative protection in the inducible CAM plant Sedum album L. following the imposition of severe water stress and recovery. Oecologia, 107 (4): 469-477.
  • [28] Heath R.L., Packer L. 1968. Photoperoxidation in isolated chloroplast. I.kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125 (1): 189- 198.
  • [29] Velikova V., Yordanov I., Edrev A. 2000. Oxidative stress and some antioxidant systems in acid rain treated bean plants protective role of exogenous polyamines. Plant Science, 151 (1): 59-66.
  • [30] Carillo P., Mastrolonardo G., Nacca F., Parisi D., Verlotta A., Fuggi A. 2008. Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine. Functional Plant Biology, 35 (5): 412-426.
  • [31] Arnon D. 1949. Copper enzymes in isolated chloroplasts, polyphenol oxidase in Beta vulgaris. Plant Physiology, 24 (1): 1-15.
  • [32] Lichtenthaler H.K. 1987. Impacts of Global Change on Tree Physiology and Forest Ecosystems. Edited by Mohren, GMJ., Academic Press, 8: 350-382.
  • [33] Lisar S.Y.S., Motafakkerazad R., Hossain M.M., Rahman I.M.M. 2012. Water Stress in Plants: Causes, Effects and Responses, in Water Stress, Edited by Ismail Md. Mofizur Rahman, Hasegawa H. InTech: New York, USA.
  • [34] Turk M.A., Rahman A., Tawaha M., Lee K.D. 2004. Seed germination and seedling growth of three lentil cultivars under moisture stress. Asian Journal of Plant Sciences, 3 (3): 394-397.
  • [35] Soni P., Rizwan M., Bhatt K.V., Mohapatra T., Singh G. 2011. In vitro response of Vigna aconitifolia to drought stress induced by PEG-6000. Journal of Stress Physiology and Biochemistry, 7 (3): 108-121.
  • [36] Ghafoor A. 2013. Unveiling the mess of red pottage through gel electrophoresis: a robust and reliable method to identify Vicia sativa and Lens culinaris from a mixed lot of split “Red Dal”. Pakistan Journal of Botany, 45 (3): 915-919.
  • [37] Ullah U., Ashraf M., Shahzad S.M., Siddiqui A.R., Piracha M.A., Suleman, M. 2016. Growth behavior of tomato (Solanum lycopersicum L.) under drought stress in the presence of silicon and plant growth promoting Rhizobacteria. Soil and Environment, 35 (1): 65-75.
  • [38] Altuntaş C., Terzi, R., 2021. Concomitant accumulations of ions, osmoprotectants and antioxidant system-related substances provide salt tolerance capability to succulent extreme-halophyte Scorzonera hieraciifolia. Turkish Journal of Botany, 45: 340-352.
  • [39] Sairam R.K., Srivastava G.C., Saxena D.C. 2000. Increased antioxidant activity under elevated temperature: a mechanism of heat stress tolerance in wheat genotypes. Biologia Plantarum, 43 (2): 245-251.
  • [40] Moussa H.R., Abdel-Aziz S.M. 2008. Comparative response of drought tolerant and drought sensitive maize genotypes to water stress. Australian Journal of Crop Science, 1 (1): 31-36.
  • [41] Hong-Bo S., Xiao-Yan C., Li-Ye C., Xi-Ning Z., Gang W., Yong-Bing Y., Chang-Xing Z., ZanMin H. 2006. Investigation on the relationship of proline with wheat anti-drought under soil water deficits. Colloids Surf B: Biointerfaces, 53 (1): 113-119.
  • [42] Mohammadkhani N., Heidari R. 2008. Drought induced accumulation of soluble sugar and proline in two maize varieties. World Applied Sciences Journal, 3 (3): 448-453.
  • [43] Shtereva, L., Atanassova B., Karcheva T., Petkov V. 2008. The effect of water stress on the growth rate, water content and proline accumulation in tomato calli and seedlings. Acta Horticulturae, 789: 189-197.
  • [44] Ghorbanli M., Gafarabad M., Amirkian T.A.N.N.A.Z., Allahverd M.B. 2013. Investigation of Proline, total protein, chlorophyll, ascorbate and dehydroascorbate changes under drought stress in Akria and Mobil tomato cultivars. Iranian Journal of Plant Phsiology, 3 (2): 651-658.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü
Sayıdaki Diğer Makaleler

Bikompleks Sayılar: Fibonacci ve Fibonacci-Lucas Matrislerine yönelik Yaklaşımına İlave katkılar

Faik BABADAĞ

Üçüncü Mertebeden Kısmi Diferansiyel Denklemin Homotopy Pertürbasyon Metodu ile Çözümü

Mahmut MODANLI, Hüseyin EŞ

Düşük Dayanımlı Betonlarla Üretilen Kolonlarda Hasar Sınırlarının TBDY 2018’e Göre Deneysel Olarak İncelenmesi

Hasan ELÇİ

Mekanik Alaşımlama ve Yeni Geliştirilen Gaz Atomizasyon Yöntemleri ile Üretilen AgCu Alaşımlarının Yapısal ve Isısal Özelliklerinin Karşılaştırılması

Hakan YAYKAŞLI, Alaaddin GÜNDEŞ, Hakan ÖZGER

Alkali ile Aktive Edilmiş EPS İkameli Harçların Mekanik ve Fiziksel Özellikleri ile Yüksek Sıcaklığa Karşı Dirençlerinin Araştırılması

Uğur DURAK, Serhan İLKENTAPAR, Halil EREN

Alkali ile Aktive Edilmiş EPS İkameli Harçların Mekanik Özelliklerinin, Isı Geçirimlilik Özelliklerinin ve Yüksek Sıcaklığa Karşı Dirençlerinin Araştırılması

Halil EREN, Serhan İLKENTAPAR, Uğur DURAK

Uluslararası Bir Krizin Oyun Teorisi ile Matematiksel Olarak Modellenmesi

Murat ÖZKAYA, Burhaneddin İZGİ

$Z_8+uZ_8$ Halkası Üzerinde Çift Aykırı Devirli Kodlar

Basri ÇALIŞKAN

C,H,O-Katsayılı Sedeniyonların Özel Matris Gösterimleri ve Bazı Özellikleri

Özcan BEKTAŞ

Antibakteriyel ve Antikanser Özellikleri Gösteren Piridin ve Kinolin Temelli Schiff Bazı Türevlerinin Sensör Özellikleri

Mevlüt BAYRAKCI, Bahar YILMAZ, Pelin YEŞİLDAŞ