Vibration Dynamics of H+F2 Reactive Scattering

Bu çalışmada kimyasal lazerler için önemli olan, taban elektronik durum üzerinde H+F2 reaksiyonunun titreşim dağılımları görüşülmüştür. Reaksiyonla oluşan HF molekülü, belli çarpışma enerjilerinde, başlangıç ve son kuantum durumlarına bağlı olarak incelenmiştir. Sonuçlar, güçlü etkileşme bölgesinde daha gerçekçi değerleri verebilen potansiyel enerji yüzeyi üzerinde zamana bağlı kuantum mekaniksel Reel Dalga Paketi (RWP) kullanılarak elde edildi. Bir durumdan diğerine reaksiyon dağılımları, 0,105 eV luk deneysel sonuçlar ve 0,494 ve 0,086 eV luk Yarı Klasik İz metodu (QCT) sonuçları ile kıyaslayabilmek için hesaplandı. Ayrıca bu çalışmada, elde edilen hız sabitleri literatürde bulunan deneysel ve teorik değerlerle karşılaştırıldı ve birbirleri ile iyi uyumda oldukları gözlemlendi.  

Vibration Dynamics of H+F2 Reactive Scattering

In this paper the vibration distributions of H+F2 reaction on the ground electronic state, which are important for chemical laser, have been discussed. The HF molecule formed by this reaction has been examined depending on the initial and final vibration states in particular collision energies. The results have been obtained using time dependent quantum mechanical Real Wave Packet (RWP) method on Potential Energy Surface (PES) [Chemical Physics Letters, Vol. 496, 2010, 248-263], which can be given more realistic values in the strong interaction region. The state to state reaction distributions have been calculated to be able to compare with both experimental results at the collision energy of 0.105 eV and Quasi-Classical Trajectories (QCT) results depended on LEPS potential at the collision energies of 0.494 eV and 0.086 eV.  Also in this study, the obtained rate constants have been compared by theoretical and experimental values in the literature and are found to be in good agreement to each other.

___

  • Morari C. 2001. Zeitabhangige Untersuchungen zu reaktiven Streuprozessen, der Universitat Siegen, der Naturwissenschaften, Siegen, 1.
  • Connor J. N. L. 1981. Isotope Effect and Chemical Reaction Dynamics of Muonium in the Gas Phase, Hyperfine Interactions, 8 :423-434.
  • Davis S. J., Oakes D. B., Read M. E., and Gelb A. H. 2002. Atomic Fluorine Source for Chemical Lasers, Physical Sciences Inc., 20 New England Business Center, Andover, MA, USA 01810-1077.
  • Polanyi J. C. 1987. Some Concepts in Reaction Dynamics, Science, 236 : 680-690.
  • Bittererova M., Biskupic S., Lischka H., Jakubetz W. 2000. The Barrier Topography of the H+F2 Potential Energy Surface, Phys. Chem. Chem. Phys. 2: 513-521.
  • Han J., Heaven M. C., Manke II G. C. 2002. Hydrogen Atom Reaction with Molecular Halogens: The Rate Constants for H+F2 and H+Cl 2 at 298 0K, J. Phys. Chem. A 106: 8417-8421.
  • Preub R., Peyerimhoff S. D., Buenker R. J. 1977. Structure and Stability of the HFF and FHF Radicals, Journal of Molecular Structure, 40: 117-126.
  • Sayos R., Gonzalez M., and Aguilar A. 1990. Classical Dynamics of the O(3P)+CS(X1T+) CO(X1T+)+ S(3P) Reaction on the Ground Triplet Potential Energy Surface, Chemical Physics, 141: 401-415.
  • Jonathan N., Melliar-Smith C. M., Slater D. H. 1970. Initial Vibrational Energy Level Populations Resulting from the Reaction H+F2 as Studied by Infrared Chemiluminescence, J. Chem. Phys. 53: 4396.
  • Polanyi J. C., Sloan J. J. 1972. Energy Distribution among Reaction Products VII. H+F2, J. Chem. Phys. 57:4988.
  • Gimenez X., Lucas J. M., and Aguilar A., Lagana A. 1993. Calculated versus Measured Vibrational State Specific Reactivity of H+F2, J. Phys. Chem. 97: 8578-8582.
  • Jorji M., Honvault P. 2009. State-to-state quantum dynamical study of the N+OH  NO+H, J. Phys. Chem. A 113: 2316-2322.
  • Lin S. Y., Guo H. 2004. Quantum Integral Cross-Section and Rate Constant of the O(1D) +H2 OH+H Reaction on a New Potential Energy Surface, Chemical Physics Letters, 385: 193-197.
  • Polanyi J. C, Schreiber J. L., Sloan J. J. 1975. Distribution of Reaction Products (theory). XI. H+F2, Chem. Phys., 9: 403.
  • Tardy D. C., Feezel L.L. 1988. Chemiluminescence mapping: pressure-pulse results for H(D) + F2 → HF(DF) + F, Chem. Phys., 119: 89.
  • Jonathan N., Okuda S., Timlin D. 1972. Initial vibrational energy distributions determined by infra-red chemiluminescence, Mol. Phys., 24: 1143.
  • Albright R. G., Dodonov A. F., Lavrovskaya G. K., Morosov I. I., and Tal’roze V. L. 1969. Mass‐Spectrometric Determination of Rate Constants for H‐Atom Reactions with Cl2 and F2, The Journal of Chem. Phys., 50: 8.
  • Homman K. H., Schweinfurth H. and Warnatz J. 1977. Ber. Bunsenges. Phys. Chem., Rate Measurements for the Reaction of H-Atoms with F2 (pages 724–728), 81: 724.
  • Gimenez X., Luces J. M., Aguilar A.and Lagana A. 1993. Calculated versus measured vibrational state specific reactivity of hydrogen atom + fluorine, J. Phys. Chem. 97: 8578-8582.
  • Cohen N., Bott J. F, The Aerospace Corporation El Segundo, Calif. 90245, SAMSO-TR-76-82.
  • Gogtas F., Karabulut E., Tanaka T., Takayanagi T. and Tutuk R. 2012. Real wave packet and flux analysis studies of the H+ F2→ HF+ F Reaction, International Journal of Quantum Chemistry, 112, 2348-2354.
  • Cohen N., Westberg K. R. 1983. Chemical Kinetics Data Sheets for High-Temperature Chemical Reaction, J. Phys. Chem. Ref. Data 12: 531.