Van Balığında (Alburnus tarichi Güldenstädt, 1814) Üreme Göçü Sırasında Oksidatif Stresin Araştırılması

Van Balığı, Türkiye’nin en büyük gölüne endemik anadrom bir türdür. Balıklar, her sene üremesinigerçekleştirmek için alkali Van Gölü’nden göle dökülen tatlı sulara göç ederler. Balık bu göç sırasında açlık, tuzve pH adaptasyonu gibi farklı stres faktörlerine maruz kalır. Bu çalışmada, Van Balığının üreme göçü öncesi vesonrasında plazma, solungaç, karaciğer, beyin ve kas gibi dokularındaki total oksidan ve antioksidan, lipidperoksidasyon ve DNA hasarları karşılaştırıldı. Total oksidan durum (TOS) üreme öncesi gölden yakalananbalıkların karaciğer ve böbrek dokularında, total antioksidan durum (TAS) ise akarsudan yakalanan balıklardakaraciğerde, gölden yakalanan balıkların ise beyin ve böbrek dokularında yüksek olduğu bulundu (P

Investigation of Oxidative Stress in Van Fish (Alburnus tarichi Güldenstädt, 1814) During Reproductive Migration

Van Fish is an anadromous species of endemic to Turkey’s largest lake. The fish migrate to the freshwater pouring from the alkaline Lake Van to the lake for the reproduction every year. Fish are exposed to different stress factors such as fasting, salt and pH adaptation during migration. In this study, total oxidant and antioxidant, lipid peroxidation and DNA damages in tissues such as gill, liver, plasma, brain and muscle were compared before and after reproductive migration. Total oxidant status (TOS) of the fish caught in the lake before reproduction, liver and kidney tissues, total antioxidant status (TAS), fish liver caught from freshwater, fish from the lake were observed to be high in the brain and kidney tissues (P

___

  • [1] Lushchak V.I. 2011. Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology, 101 (1): 13-30.
  • [2] Birnie‐Gauvin K., Costantini D., Cooke S.J., Willmore W.G. 2017. A comparative and evolutionary approach to oxidative stress in fish: a review. Fish and Fisheries, 18 (5): 928-942.
  • [3] Kasai H. 1997. Analysis of a form of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutation Research/Reviews in Mutation Research, 387 (3): 147-163.
  • [4] Almroth B.C., Asker N., Wassmur B., Rosengren M., Jutfelt F., Gräns A., Sundell K., Axelsson M., Sturve J. 2015. Warmer water temperature results in oxidative damage in an Antarctic fish, the bald notothen. Journal of Experimental Marine Biology and Ecology, 468: 130-137.
  • [5] Wilson S.M., Taylor J.J., Mackie T.A., Patterson D.A., Cooke S.J., Willmore W.G. 2014. Oxidative stress in Pacific salmon (Oncorhynchus spp.) during spawning migration. Physiological and Biochemical Zoology, 87 (2): 346-352.
  • [6] Liu Y., Wang W.N., Wang A.L., Wang J.M., Sun R.Y. 2007. Effects of dietary vitamin E supplementation on antioxidant enzyme activities in Litopenaeus vannamei (Boone, 1931) exposed to acute salinity changes. Aquaculture, 265 (1-4): 351-358.
  • [7] Bayir A., Sirkecioglu A.N., Bayir M., Haliloglu H.I., Kocaman E.M., Aras N.M. 2011. Metabolic responses to prolonged starvation, food restriction, and refeeding in the brown trout, Salmo trutta: oxidative stress and antioxidant defenses. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 159 (4): 191-196.
  • [8] Morales A.E., Pérez-Jiménez A., Hidalgo M.C., Abellán E., Cardenete G. 2004. Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 139 (1): 153-161.
  • [9] Rueda-Jasso R., Conceiçao L.E., Dias J., De Coen W., Gomes E., Rees J.F., Sorgeloos P. 2004. Effect of dietary non-protein energy levels on condition and oxidative status of Senegalese sole (Solea senegalensis) juveniles. Aquaculture, 231 (1-4): 417-433.
  • [10] Danulat E, Selçuk B. 1992. Life history and enviromental conditions of the anadromous Chalcalburnus tarichi (Cyprinidae) in the highly alkaline Lake Van, Eastern Anatolia, Turkey. Arch Hidrobiol., 126 (1): 105–125.
  • [11] Kelly K.A., Havrilla C.M., Brady T.C., Abramo K.H., Levin E.D. 1998. Oxidative stress in toxicology: established mammalian and emerging piscine model systems. Environmental health perspectives, 106 (7): 375-384.
  • [12] Slaninova A., Smutna M., Modra H., Svobodova Z. 2009. REVIEWS Oxidative stress in fish induced by pesticides. Neuroendocrinology Letters, 30 (1): 2.
  • [13] Jain S.K., McVie R., Duett J., Herbst J.J. 1989. Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes. Diabetes, 38 (12): 1539-1543.
  • [14] Ünal G., Çetinkaya O., Elp M. 1999. Histological investigation of gonad development of Chalcalburnus tarichi (P., 1811). Turkish Journal of Zoology, 23 (EK1): 329-338.
  • [15] Marshall W.S., Grosell M. 2006. Ion transport, osmoregulation, and acid-base balance. The physiology of fishes, 3: 177-230.
  • [16] Pascual P., Pedrajas J.R., Toribio F., López-Barea J., Peinado J. 2003. Effect of food deprivation on oxidative stress biomarkers in fish (Sparus aurata). Chemico-biological interactions, 145 (2): 191-199.
  • [17] Nam Y.K., Cho Y.S., Choi B.N., Kim K.H., Kim S.K., Kim D.S. 2005. Alteration of antioxidant enzymes at the mRNA level during short‐term starvation of rockbream Oplegnathus fasciatus. Fisheries Science, 71 (6): 1385-1387.
  • [18] Welker T.L., Congleton J.L. 2005. Oxidative stress in migrating spring Chinook salmon smolts of hatchery origin: changes in vitamin E and lipid peroxidation. Transactions of the American Fisheries Society, 134 (6): 1499-1508.
  • [19] Hidalgo M.C., Exposito A., Palma J.M., de la Higuera M. 2002. Oxidative stress generated by dietary Zn-deficiency: studies in rainbow trout (Oncorhynchus mykiss). The international journal of biochemistry & cell biology, 34 (2): 183-193.
  • [20] Varju M., Müller T., Bokor Z., Żarski D., Mézes M., Balogh K. 2018. The effects of excessive starvation on antioxidant defence and lipid peroxidation in intensively reared, commercial-size pikeperch (Sander lucioperca L.). The Egyptian Journal of Aquatic Research, 44 (4): 349-352.
  • [21] Martinez-Alvarez R.M., Hidalgo M.C., Domezain A., Morales A.E., García-Gallego M., Sanz A. 2002. Physiological changes of sturgeon Acipenser naccarii caused by increasing environmental salinity. Journal of experimental biology, 205 (23): 3699-3706.
  • [22] Martínez-Álvarez R.M., Morales A.E., Sanz A. 2005. Antioxidant defenses in fish: biotic and abiotic factors. Reviews in Fish Biology and fisheries, 15 (1-2): 75-88.
  • [23] Barzilai A., Yamamoto, K.I. 2004. DNA damage responses to oxidative stress. DNA Repair, 3 (8-9): 1109-1115.
  • [24] Oğuz A.R. 2015. Histological changes in the gill epithelium of endemic Lake Van Fish (Chalcalburnus tarichi) during migration from alkaline water to freshwater, North-Western Journal of Zoology 11 (1): 51-57.
  • [25] Oğuz A.R. 2013. Environmental regulation of mitochondria-rich cells in Chalcalburnus tarichi (Pallas, 1811) during reproductive migration. The Journal of membrane biology, 246 (3): 183- 188.
  • [26] Miller K.M., Schulze A.D., Ginther N., Li S., Patterson D.A., Farrell A.P., Hinch S.G. 2009. Salmon spawning migration: metabolic shifts and environmental triggers. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 4 (2): 75-89.