Toz metalurjisi ile Üretilen NiTi Alaşımına Al’un Etkisi

Bu çalışmada, Ti-50,5Ni-xAl(x=0, 2, 4) alaşımı toz metalürjisi yöntemlerinden SHS ile üretildi. Üretilen NiTiAlalaşımlarında Al oranının numunelerin mikroyapılarına ve mikrosertliklerine etkileri detaylı bir şekilde incelendi.Mikroyapı analizleri optik mikroskobu(OM) ve taramalı elektron mikroskobu (SEM) ile faz bileşenleri ise EnerjiDağılımlı Spektroskopi (EDX) ve X-Işınları Kırınım Cihazı (XRD) analizi ile tespit edildi. Sertlik ölçüm testleriVickers (Hv) mikrosertlik ölçüm cihazında yapılmıştır. Ateşleme sonrası ekzotermik reaksiyon sonucundabaşlayan yanma reaksiyonu esnasında yüzeyde oluşan sıcaklık değişimi lazer sıcaklık ölçüm cihaz ile tespit edildi.Optik mikroskop(OM) analizleri sonucunda Al içeriğinin artmasına bağlı olarak gözenek oranın arttığıgözlenmektedir. Ayrıca Al ilavesiz NiTi numunesinde ise yanma kanallarının yoğun olduğu görüldü. Hem EDXhem de XRD anliz sonuçlarında alaşımlarda NiTi, NiTi2 ve Ti3Al fazlarının varlığı tespit edildi. Yüzey sıcaklıkölçüm sonuçlarında yanma reaksiyonu en düşük 550℃ elde edilirken en yüksek ise 1250℃ ölçüldü. Mikrosertlikölçüm sonuçlarında en düşük sertlik değeri 176.8 HV0,5 ağ. %4 Al numunesinden elde edilirken, en yüksek değerise 301.7 HV0,5 NiTi numunesinde ölçüldü.

The Effect of Al of NiTi Alloy Fabricated by Powder Metallurgy

In this study, Ti-50,5Ni-xAl (x=0, 2, 4) alloy is produced by SHS which is one of the powder metallurgy methods. The effects of Al ratios on the microstructure and microhardness of the samples in the produced NiTiAl alloys are examined in detail. The analysis of microstructure is determined by optical microscope and scanning electron microscope (SEM) and phase components are analysed by Energy Dispersive spectroscopy (EDX) and X-Ray Diffraction Device (XRD). The measurement tests of hardness are carried out by using Vickers (Hv) microhardness test device. The temperature change on the surface during the combustion reaction which started as a result of the exothermic reaction after ignition is measured by a laser temperature measuring device. Based on the results of optical microscope (OM) analysis, the pore ratio has increase with the increase ratio of Al content. Moreover, it is observed that the combustion channels are intense fort he NiTi sample without Al content. At both of the results of EDX and XRD analysis, it has been noticed the presence of NiTi, NiTi2 ve Ti3Al phases in the alloys. In surface temperature measurement results, the lowest 550 ℃ combustion reaction was obtained, while the highest 1250 ℃ was measured. For the microhardness measurement results, the lowest value is observed as 176.8 HV0,5 from the %4 Al alloy samples while the highest value is measured 301.7 HV0,5 from NiTi sample.

___

  • [1] Tosun G., Kilic M., Ozler L., Tosun N. 2018. Characterization of a Porous Nickel-Titanium Alloy Produced with Self-Propagating High-Temperature Synthesis. MTAEC9, 52 (4): 435.
  • [2] Shanmugavel R., Mokkandi P., Jayamani M., Rajini N., Uthayakumar M., Thirumalaikumaran S. 2017. Mechanical and Machinability characteristics of Al–NiTi composites reinforced with SiC particulates. J Aust Ceram Soc., 53: 177-185.
  • [3] Velmurugan C., Senthilkumar V., Dinesh S., Arulkirubakaran D. 2018. Review on phase transformation behavior of NiTi shape memory alloys. Mater Today Proc., 5: 14597-14606.
  • [4] Yener T., Siddique S., Walther F., Zeytin S. 2015. Effect of Electric Current on the Production of NiTi Intermetallıcs Via Electric-Current-Activated Sintering. Materiali In Tehnologije, 49: 721.
  • [5] Farvizi M., Akbarpour R.M., Ahn H-D., Kim S.H. 2016. Compressive behavior of NiTi-based composites reinforced with alumina nanoparticles. J Alloys Compd., 688: 803-807.
  • [6] Zhao C., Liang H., Luo S., Yang J., Zemin Wang Z. 2020. The effect of energy input on reaction, phase transition and shape memory effect of NiTi alloy by selective laser melting. J Alloys Compd 817: 153288.
  • [7] Zeng Z., Cong B.Q., Oliveira J.P., Ke W.C., Schell N., Peng B., Qi Z.W., Ge F.G., Zhang W., Ao S.S. 2020. Wire and arc additive manufacturing of a Ni-rich NiTi shape memory alloy: microstructure and mechanical properties. Addit Manuf., doi: https://doi.org/10.1016/j.addma.2020.101051.
  • [8] Lou J., He H., Li Y., Zhu C., Chen Z., Liu C., 2016. Effects of high O contents on the microstructure, phase-transformation behaviour, and shape-recovery properties of porous NiTibased shape-memory alloys. Materials and Design, 106: 37-44.
  • [9] Xu J.L., Bao L.Z., Liu A.H., Jin X.F., Luo J.M., Zhong Z.C., Zheng Y.F. 2015. Effect of pore sizes on the microstructure and properties of the biomedical porous NiTi alloys prepared by microwave sintering. J Alloys Compd., 645: 137-142.
  • [10] Kurt B., I. Somunkiran İ. 2008. Interface microstructure of porous Ni–Ti and Co–Cr–Mo powder alloy couple fabricated by SHS process. Powder Metallurgy, 51 (3): 254-256.
  • [11] Gunter V., Yasenchuk Y., Gunther S., Marchenko E., Yuzhakov M. 2019. Biocompatibility of Porous SHS-TiNi. Materials Science Forum, 970: 320-327.
  • [12] Salvetr P., Školáková A., Novák P. 2017. Effect of magnesium addition on the structural homogeneity of NiTi alloy produced by self-propagating high-temperature synthesis. Kovove Mater., 55: 379-383.
  • [13] Dagdelen F., Balci E., Qader N.I, Ozen E., Kok M., Kanca S.M., Abdullah S.S., Mohammed S.S. 2020. Influence of the Nb Content on the Microstructure and Phase Transformation Properties of NiTiNb Shape Memory Alloys. JOM, 72: 4.
  • [14] Duan S., Shi X., Zhang M., Li B., Dou G., Guo H., Guo J. 2019. Determination of the thermodynamic properties of Ni-Ti, Ni-Al, and Ti-Al, and nickel-rich Ni-Al-Ti melts based on the atom and molecule coexistence theory. J Mol Liq., 294: 111462.
  • [15] Shia J., Zheng A., Lin Z., Chen R., Zheng J., Cao Z. 2019. Effect of process control agent on alloying and mechanical behavior of L21 phase Ni–Ti–Al alloys. J Mater Sci Eng A, 740-741: 130-136.
  • [16] Chen H., Zheng J.L., Zhang X.F., Zhang H. 2017. Thermal stability and hardening behavior in superelastic Ni-rich Nitinol alloys with Al addition. J Mater Sci Eng A, 708: 514-522.
  • [17] Zhao Y., Wang L., Sun Y., Liu H., Jiang C., Ji V., Li W. 2019. Influences of Al and Ti particles on microstructure, internal stress and property of Ni composite coatings. J Alloys Compd., 793: 314-325.
  • [18] Kim D.H., Kim W.T., Kim D.H. 2004. Formation and crystallization of Al–Ni–Ti amorphous alloys. J Mater Sci Eng A, 385: 44-53.
  • [19] Hsiung L-C., Sheu H-H. 2009. A comparison of the phase evolution in Ni, Al, and Ti powder mixtures synthesized by SHS and MA processes. J Alloys Compd., 479: 314-325.
  • [20] Sichani R.H., Salehi M., Edris H., Farani T.M. 2017. The effect of APS parameter on the microstructural, mechanical and corrosion properties of plasma sprayed Ni-Ti-Al intermetallic coatings. Surf Coat Technol., 309: 959-968.
  • [21] Hu R., Nash P., Chen Q., Zhang L., Du Y. 2009. Heat capacities of several Al–Ni–Ti compounds. Thermochimica Acta, 486: 57-65.
  • [22] Kılıç M., Beken M., Özdemir N. 2019. Investigation of the Effect of Sintering Process After Shs Processing on Intermetallic Coating. Fırat Üniversitesi Müh. Bil. Dergisi, 31 (1): 167-176.
  • [23] Monogenov A.A., Gunther V.E., Ivchenko O.A., Stebluk A.N., Radkewich A.A., Ariamkin A.A., Shtofin S.S. 2017. Structure and Properties of Porous Alloys Based on NiTi Doped by Al, Fabricated by SHS-method, in Shape Memory Biomaterials and Implants in Medicine. KnE Materials Science, 62-71.
  • [24] Morsi K. 2001. Review: reaction synthesis processing of Ni–Al intermetallic materials. J Mater Sci Eng A, 299: 1-15.
  • [25] Sina H., Surreddi B.K., Iyengar S. 2016. Phase evolution during the reactive sintering of ternary Al-Ni-Ti powder compacts. J Alloys Compd., 661: 294-305.
  • [26] Kaya M., Orhan N., Kurt B. 2009. Effect of solution treatment under load on microstructure and fabrication of porous NiTi shape memory alloy by self-propagating high temperature synthesis. Powder Metallurgy, 52 (1): 36-41.
  • [27] Kaya M., Orhan N., Tosun G. 2010. The effect of the combustion channels on the compressive strength of porous NiTi shape memory alloy fabricated by SHS as implant material. Curr Opin Solid State Mater Sci., 14: 21-25.
  • [28] Dong H.X., Jiang Y., He Y.H., Song M., Zou J., Xu N.P., Huang B.Y., Liu C.T., Liaw P.K. 2009. Formation of porous Ni–Al intermetallics through pressureless reaction synthesis. J Alloys Compd., 484: 907-913.
  • [29] Novák P., Mejzlíková L, Michalcová A., Čapek J., Beran P., Vojtěch D. 2013. Effect of SHS conditions on microstructure of NiTi shape memory alloy. Intermetallics, 42: 85-91.
  • [30] Liu B., Liu Z., Liu X., Wang W., Wang L. 2013. Effect of sintering temperature on the microstructure and mechanical properties of Ti50Ni50 and Ti47Ni47Al6 intermetallic alloys. J Alloys Compd., 578: 373-379.
  • [31] Tosun G., Ozler L., Kaya M., Orhan N. 2009. A study on microstructure and porosity of NiTi alloy implants produced by SHS. J Alloys Compd., 487: 605-611.
  • [32] Khanlari K., Ramezani M., Kelly P., Cao P., Neitzert T. 2018.Synthesis of As-sintered 60NiTi Parts with a High Open Porosity Level. Materials Research, 21 (5): e20180088.
  • [33] Salvetr P., Školáková A., Hudrisier C., Novák P., Vojtěch D. 2018. Reactive Sintering Mechanism and Phase Formation in Ni-Ti-Al Powder Mixture During Heating. Materials, 11: 689.
  • [34] Xu J.L., Bao L.Z., Liu A.H., Jin X.J., Tong Y.X., Luo J.M., Zhong Z.C., Zheng Y.F. 2015. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering. Mater Sci Eng C, 46: 387-393.
  • [35] Mousavi T., Karimzadeh F., Abbasi H.M. 2009. Mechanochemical assisted synthesis of NiTi intermetallic based nanocomposite reinforced by Al2O3. J Alloys Compd., 467: 173-178.
  • [36] Raghavan V. 2005. Al-Ni-Ti (Aluminum-Nickel-Titanium). J Phs Eqil and Diff, 26: 268-272.
  • [37] Gashti O.S., Shokuhfar A., Ebrahimi-Kahrizsangi R., Nasiri-Tabrizi B. 2010. Synthesis of nanocrystalline intermetallic compounds in Ni–Ti–Al system by mechanothermal method. J Alloys Compd., 491: 344-348.
  • [38] Li P., Wang Y., Meng F., Cao L., He Z. 2019. Effect of Heat Treatment Temperature on Martensitic Transformation and Superelasticity of the Ti49Ni51 Shape Memory Alloy. Materials, 12: 2539.
  • [39] Kilic M., Yenigun B., Bati B., Balalan Z., Kirik İ. 2019. Effect of Cu addition on porous NiTi SMAs produced by self propagating high-temperature Synthesis. Materials Testing, 61 (12): 1140-1144.
  • [40] Aksöz S. 2017. Microstructural and Mechanical Investigation of NiTi Intermetallics Produced by Hot Deformation Technique. Arab J Sci Eng., 42: 2573-2581.
  • [41] Novák P., Skoláková A., Pignol D., Průš F., Salvetr P., Kubatík F.T., Perriere L., Karlík M. 2016. Finding the energy source for self-propagating high-temperature synthesis production of NiTi shape memory alloy. Mater Chem Phys., 181: 295-300.
  • [42] Baumann A.M. 2004. Nickel–titanium: options and challenges. Dent Clin N Am, 48: 55-67.
  • [43] Ye N., Ren X., Liang J. 2020. Microstructure and mechanical properties of Ni/Ti/Al/Cu composite produced by accumulativeroll bonding (ARB) at room temperature. J. Mater. Res. Technol., 9 (3): 5524-5532.
  • [44] Sang C., Cai X., Zhu L., Ren X., Niu G., Wang X., Feng P. 2020. Interfacial microstructure of Ti/Ni joints with Ti–Al interlayer by rapid thermal explosion bonding in vacuum. Vacuum, 171: 109028.
  • [45] Čapek J., Kučera V., Fousovà M., Vojtĕch D. 2013. Preparation of The NiTi Shape Memory Alloy By The Te-Shs Method – Influence of the Sintering Time. METAL 2013-22nd International Conference on Metallurgy and Materials, Conference Proceedings, 15-17 May, Brno, Czech Republic, E.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü
Sayıdaki Diğer Makaleler

On the Distribution and Host-Plant of Aristotelia subericinella (Duponchel, 1843) (Lepidoptera: Gelechiidae)

Kesran AKIN, Erdem SEVEN

Toz metalurjisi ile Üretilen NiTi Alaşımına Al’un Etkisi

Musa KILIÇ

Yeşil Kaplumbağa Yuvalama Alanından İzole Edilen Aspergillus alliaceus'un Ağır Metal Tolerans Potansiyeli

Esra Deniz CANDAN

Türkiye’de Yetişen Lallemantia Fisch. & C.A.Mey. Türlerinin Karyotip Analizleri: Detaylı Karyotip Asimetri Çalışması

Osman GEDİK, Yaşar KIRAN, Murat KÜRŞAT, İrfan EMRE

Bir Aylık ve Beş Aylık Erkek Ratlarda Medulla Spinalis’in Torakal Segmenti Üzerine Yapılan Morfolojik ve Stereolojik Bir Çalışma

Gamze ÇAKMAK, Asiye ARKAÇ TOYRAN

Rezene ve Kimyon Ekstraktlarının Keten Tohumunun Çimlenme Parametreleri ve Kök Ucu Hücrelerinde Mitotik Aktivite Üzerine Etkisi

Ömer Süha USLU, Osman GEDİK

Türkiye'de Çevik ve Klasik Yazılım Geliştirme Metodolojilerine Dair Kapsamlı Bir Değerlendirme

Duygu ÇALIŞKAN, Ahmet YAVUZ, Buket DOĞAN, Banu ÇALIŞ

Bitlis İli Şartlarında Merkezi Isıtma Sisteminde Kullanılan Farklı Yakıt Türlerinin Ekonomik ve Çevresel Etkilerinin İncelenmesi

Ali ELHUVEYDİ, Faruk ORAL

Molecular Typing with BOX-PCR of Staphylococcus aureus Isolated from Milk Samples

Elif GÜLBAHÇE MUTLU, Emine ARSLAN

Kars İli Sarıkamış İlçesi İçme Suyu Arıtma Tesisi Giriş ve Çıkış Su Kalitesinin Aylara Göre Değişiminin İncelenmesi

Sinan KUL, Şahset İRDEMEZ, Hacer ÖZGER, Fatma EKMEKYAPAR TORUN