Pressure Effects on the Structural Evolution of Monatomic Metallic Liquid Hafnium

Mono-atomik metalik sıvı hafniyumun 0-50 GPa yüksek basınçları altındaki yapısal değişimi, hızlı katılaştırma süreci sırasında sıkı-bağlı çok cisim potansiyeli kullanılarak moleküler dinamik benzetimleri ile araştırılmıştır. Yapısal gelişim ve cam oluşum süreçleri çiftler dağılım fonksiyonları, Wendt-Abraham parametresi, Honeycutt-Andersen ve Voronoi tessellation metotları kullanılarak analiz edilmiştir. Sistem 2x1013 Ks-1'lik bir soğutma oranı ile soğutulduğunda, P≤40 GPa olan basınçlar için camsı yapı ve P = 50 GPa basıncında da kristal faz elde edildi. Basıncın artmasıyla, yüzey merkezli kübik (fcc) ve altıgen sıkı paketlenmiş (hcp) (fcc + hcp) tipi bağlı çiftlerin sayısı çarpıcı bir şekilde artarken, mükemmel icosahedra, bozuk icosahedra ve cisim merkezli kübik (bcc) tipi bağlı çiftlerin sayısı azalmıştır. Bu, sistemin katılaşma sürecinin sıvıda çekirdeklenme ile başladığını ve artan basınçla çekirdeklenmenin gelişmeye devam ettiğini gösterir. Sonuçlar, yerel atomik bağlı çiftlerin varyasyonunun, cam oluşumu ve kristalleşme sürecinin anlaşılması açısından büyük önem taşıdığını göstermektedir. Bununla birlikte, uygulanan yüksek basıncın icosahedral düzeni zayıflattığı ve düşük sıcaklıklarda camsı hafniyumdaki diğer kümelerin sayısını arttırdığı gözlenmiştir. Ayrıca, cam geçiş sıcaklıklarının, ana bağlı tiplerin ve ana temel kümelerinin artan basınçla değiştiği gözlenmiştir.

Pressure Effects on the Structural Evolution of Monatomic Metallic Liquid Hafnium

Structural evolution of monatomic metallic liquid hafnium under high pressures of 0-50 GPa has been investigated by molecular dynamics (MD) simulations using the tight-binding many body potentials during rapidly solidified processes. The structural evolution and glass formation process have been analyzed by using pair distribution functions (PDF), Wendt-Abraham (RWA) parameter, Honeycutt-Andersen (HA) and Voronoi tessellation (VT) methods. When the system has been cooled with a cooling rate of 2x1013 Ks-1, the glassy states are obtained for P≤40 GPa pressures and the crystalline phase is obtained at P=50 GPa pressure. The number of face-centered cubic (fcc) and hexagonal close-packed (hcp) (fcc + hcp) type bonded pairs increase dramatically, while the number of perfect icosahedra, distorted icosahedra and body-centered cubic (bcc) type bonded pairs decreases with increasing of pressure. This is an indication that the solidification process of the system begins with nucleation in the liquid and that nucleation growth with increasing pressure continues to develop. The results show that the variation of local atomic bonded pairs is of great importance to understand the glass formation and crystallization process. However, it has been observed that the applied high pressure weakened icosahedral order and increased the fraction of other clusters in glassy hafnium at low temperatures. Furthermore, it has been observed that all glass transition temperatures (Tg), main bond types and main base clusters change with increasing pressure.

___

  • Chupas P. J., Chapman K. W., Lee P. L. 2007. Applications of an amorphous silicon-based area detector for high-resolution , high-sensitivity and fast time-resolved pair distribution function measurements, Journal of Applied Crystallography, 40: 463–470.
  • Li R., Wang L., Li L., Yu T., Zhao H., Karena W., Wang Y., Rivers M. L., Chupas P. J., Mao H. 2017. Local structure of liquid gallium under pressure, Scientific Reports, 1–7.
  • Inoue A. 2000. Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Materialia, 48(1): 279–306.
  • Johnson W. L. 1999. Bulk Glass-Forming Metallic Alloys : Science and Technology, MRS Bulletin, 24: 42–56.
  • Duan G., Xu D., Zhang Q., Zhang G., Cagin T., Johnson W. L., Goddard W. A. 2005. Molecular dynamics study of the binary Cu46Zr54 metallic glass motivated by experiments: Glass formation and atomic-level structure, Physical Review B, 71(22): 224208.
  • Qi L., Dong L. F., Zhang S. L., Ma M. Z., Jing Q., Li G., Liu R. P. 2008. Cluster evolution in the rapid cooling process of Cu-Ag melts under high pressure: Molecular-dynamics simulation, Computational Materials Science, 43(4): 732–735.
  • Bhat M. H., Molinero V., Soignard E., Solomon V. C., Sastry S., Yarger J. L., Angell C. A. 2007. Vitrification of a monatomic metallic liquid, Nature, 448: 787.
  • Zhong L., Wang J., Sheng H., Zhang Z., Mao S. X. 2014. Formation of monatomic metallic glasses through ultrafast liquid quenching., Nature, 512(7513): 177–80.
  • Ercolessi F., Andreoni W., Tosatti E. 1991. Melting of small gold particles: Mechanism and size effects, Physical Review Letters, 66(7): 911–914.
  • Qin J., Gu T., Yang L. 2009. Structural and dynamical properties of Fe78Si9B13 alloy during rapid quenching by first principles molecular dynamic simulation, Journal of Non-Crystalline Solids, 355(48–49): 2333–2338.
  • Jiang D., Wen D., Tian Z., Liu R. 2016. Glass formation and cluster evolution in the rapidly solidified monatomic metallic liquid Ta under high pressure, Physica A: Statistical Mechanics and its Applications, 463: 174–181.
  • Liu J., Zhao J. Z., Hu Z. Q. 2006. Pressure effect on the formation and the thermal stability of glassy Cu, Computational Materials Science, 37(3): 234–238.
  • Zhang Y., Wang L., Wang W., Liu X., Tian X., Zhang P. 2004. Pressure effect on the structural transition of liquid Au, Physics Letters A, 320: 452–458.
  • Mo J., Liu H., Zhang Y., Wang M., Zhang L., Liu B., Yang W. 2017. Effects of pressure on structure and mechanical property in monatomic metallic glass, Journal of Non-Crystalline Solids, 464: 1–4.
  • Qi L., Feng S., Xu N., Jing Q., Li G., Liu R. 2015. Pressure-induced Structures and Structural Evolution in Iron, Materials Research, 18: 78–82.
  • Celik F. A., Kazanc S., Yildiz A. K., Ozgen S. 2008. Pressure effect on the structural properties of amorphous Ag during isothermal annealing, Intermetallics, 16(6): 793–800.
  • Celtek M., Canan C., Domekeli U., Sengul S. 2017. Effect of pressure on microstructure evolution of bulk liquid hafnium during rapid solidification: a classical molecular dynamics simulation study, In International Scientific Conference “UNITECH 2017” -Gabrovo (pp. 230–235). Bulgaria.
  • Wen D., Deng Y., Liu J., Tian Z., Peng P. 2017. Effect of high pressure on the formation and evolution of clusters during the rapid solidification of zirconium melts, Computational Materials Science, 140: 275–283.
  • Lin D., Wang Y., Shang S., Lu Z., Liu Z., Hui X. 2013. A new many-body potential with the second-moment approximation of tight-binding scheme for Hafnium, Science China: Physics, Mechanics and Astronomy, 56(11): 2071–2080.
  • Phythian W. J., Stoller R. E., Foreman A. J. E., Calder A. F., Bacon D. J. 1995. A comparison of displacement cascades in copper and iron by molecular dynamics and its application to microstructural evolution, Journal of Nuclear Materials, 223(3): 245–261.
  • Foreman A. J. E., Phythian W. J., English C. A. 1992. The molecular dynamics simulation of irradiation damage cascades in copper using a many-body potential, Philosophical Magazine A, 66(5): 671–695.
  • Shim J. H., Lee H. J., Wirth B. D. 2006. Molecular dynamics simulation of primary irradiation defect formation in Fe-10%Cr alloy, Journal of Nuclear Materials, 351(1–3): 56–64.
  • Bakanova A. A., Dudoladov I. P., Sutulov Y. N. 1969. Electron transitions in Hf, Eu and Yb at high pressures, Fizika Tverdogo Tela, 11: 1881.
  • Ming L., Manghnani M. H., Katahara K. W. 1981. Investigation of a→w transformation in the Zr‐Hf system to 42 GPa, Journal of Applied Physics, 52(3): 1332–1335.
  • Xia H., Parthasarathy G., Luo H., Vohra Y. K., Ruoff A. L. 1990. Crystal structures of group IVa metals at ultrahigh pressures, Physical Review B, 42(10): 6736–6738.
  • Pandey K. K., Gyanchandani J., Somayazulu M., Dey G. K., Surinder Sharma M., Sikka S. K. 2014. Reinvestigation of high pressure polymorphism in Hafnium metal, Journal of Applied Physics, 115: 233513.
  • Smith W., Forester T. R. 1996. DL_POLY_2.0: A general-purpose parallel molecular dynamics simulation package, Journal of Molecular Graphics, 14(3): 136–141.
  • Kittel C. 1986. Introduction to Solid State Physics. New York: John Wiley Sons Inc.
  • Cleri F., Rosato V. 1993. Tight-binding potentials for transition metals and alloys, Physical Review B, 48(1): 22–33.
  • Celtek M., Sengul S., Domekeli U., Canan C. 2016. Molecular dynamics study of structure and glass forming ability of Zr70Pd30 alloy, The European Physical Journal B, 89(3): 1–6.
  • Dalgic S. S., Celtek M. 2011. Glass forming ability and crystallization of CuTi intermetallic alloy by molecular dynamics simulation. Journal of Optoelectronics and Advanced Materials, 13: 1563-1569.
  • Sengul S., Celtek M., Domekeli U. 2017. Molecular dynamics simulations of glass formation and atomic structures in Zr60Cu20Fe20 ternary bulk metallic alloy, Vacuum, 136: 20–27.
  • Celtek M., Sengul S., Domekeli U. 2017. Glass formation and structural properties of Zr50Cu50-xAlx bulk metallic glasses investigated by molecular dynamics simulations, Intermetallics, 84: 62–73.
  • Celtek M., Sengul S. 2018. The characterisation of atomic structure and glass-forming ability of the Zr–Cu–Co metallic glasses studied by molecular dynamics simulations, Philosophical Magazine, 98(9): 783–802.
  • Li J. H., Kong L. T., Liu B. X. 2004. Structural transition and glass-forming ability of the Ni–Hf system studied by molecular dynamics simulation, Journal of Materials Research, 19(12): 3547–3555.
  • Caprion D., Schober H. R. 2003. Computer simulation of liquid and amorphous selenium, Journal of Non-Crystalline Solids, 326: 369–373.
  • Wang L., Peng C., Wang Y., Zhang Y. 2006. Relating nucleation to dynamical and structural heterogeneity in supercooled liquid metal, Physics Letters A, 350: 69–74.
  • Honeycutt J. D., Andersen H. C. 1987. Molecular Dynamics Study of Melting and Freezing of Small Lennard- Jones Clusters, Journal of Physical Chemistry, 91(24): 4950–4963.
  • Voronoi G. 1908. New Parametric Applications Concerning the Theory of Quadratic Forms - Second Announcement, J. Reine Angew. Math., 134: 198–287.
  • Kazanc S. 2006. Molecular dynamics study of pressure effect on glass formation and the crystallization in liquid CuNi alloy, Computational Materials Science, 38(2): 405–409
  • Stukowski A. 2010. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool, Modelling and Simulation in Materials Science and Engineering, 18(1): 15012.
  • Finney J. L. 1970. Random packings and the structure of simple liquids I.The geometry of random close packing., Proc.Roy. Soc. Lond. A, 319: 479–493.
  • Rein ten Wolde P., Ruiz‐Montero M. J., Frenkel D. 1996. Numerical calculation of the rate of crystal nucleation in a Lennard‐Jones system at moderate undercooling, The Journal of Chemical Physics, 104(24): 9932–9947.
  • Cape J. ., Finney J. ., Woodcock L. V. 1981. An analysis of crystallization by homogeneous nucleation in a 4000-atom soft-sphere model, The Journal of Chemical Physics, 75(5): 2366–2373.
  • Yamamoto R., Doyama M. 1979. The polyhedron and cavity analyses of a structural model of amorphous iron, Journal of Physics F: Metal Physics, 9(4): 617.
  • Tanaka M. 1986. Statistics of Voronoi Polyhedra in Rapidly Quenched Monatomic Liquids I. Changes During Rapid-Quenching Process, Journal of the Physical Society of Japan, 55(9): 3108–3116.
  • Momma K., Izumi F. 2011. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, Journal of Applied Crystallography, 44(6): 1272–1276.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü