NaI(Tl) Dedektörünün GATE Simülasyon Programıyla Toplam Veriminin Belirlenmesi

Bu çalışmada Geant4 tabanlı GATE simulasyon programı kullanılarak NaI(Tl) detektörünün toplam verimi hesaplanmıştır. Simulasyon, 50-3000 keV foton enerji aralığında çeşitli kaynak-detektör uzaklıklarında izotropik nokta ve disk gama ışını kaynağı kullanılarak gerçekleştirilmiştir. Sonuçlar, 1958-2018 periyodu boyunca elde edilen farklı analitik ve Monte Carlo hesaplamaları sonuçları ile karşılaştırılmıştır. Hesaplanan ve GATE simulasyonuyla elde edilen sonuçların birbiriyle uyumlu çıkmasının yanında, bu çalışmada 50 keV ile 150 keV arasındaki düşük enerjideki gamalar için çok daha hassas sonuçlar bulunmuştur.

The Determination of the Total Efficiency for NaI(Tl) Detector by GATE Simulation

In this study the total efficiency of the NaI(Tl) detector have been calculated by using Geant4 based GATEsimulation program. The simulation was performed using point and disc isotropic gamma-ray sources at variousdistance between source and detector in the photon energy range 50-3000 keV. Results were compared withdifferent analytical and Monte Carlo calculations obtained in the time of the periods 1958-2018. The calculatedand simulated data indicated good agreement with finding more sensitive GATE simulation result in the lowerenergy range from 50 keV to 150 keV.

___

  • [1] Zazubovich S. 2001. Physics of halide scintillators. Radiation Measurements, 33 (5): 699-704.
  • [2] Mouhtia I., Elaniquea A., Messousb M.Y., Benahmedb A., McFeec J.E., Elgouba Y., Griffithd P. 2019. Characterization of CsI(Tl) and LYSO(Ce) scintillator detectors by measurements and Monte Carlo simulations. Applied Radiation and Isotopes, 154 (108878): 1-7.
  • [3] Yalcin S., Gurler O., Kaynak G., Gundogdu O. 2007. Calculation of total counting efficiency of a NaI(Tl) detector by hybrid Monte-Carlo method for point and disc sources. Applied Radiation and Isotopes, 65: 1179-1186.
  • [4] Tarım Akar U., Gürler O., Yalçın S. 2018. A Quick Method to Calculate NaI(Tl) Detector Efficiency Depending on Gamma ray Energy and Source-to-detector Distance. Celal Bayar University Journal of Science, 14 (2): 195-199.
  • [5] Hofstadter R. 1949. The Detection of Gamma-Rays with Thallium-Activated Sodium Iodide Crystals. Physical Review, 75 (5): 796-810.
  • [6] Pilakouta M., Pappa F.K., Patiris D.L., Tsabaris C., Kalfas C.A. 2018. A methodology for expanding the use of NaI(Tl) based spectrometry in environmental radioactivity measurements. Applied Radiation and Isotopes, 139: 159-168.
  • [7] Zhang Y., Li C., Liu D., Zhang Y., Liu Y., 2015. Monte Carlo simulation of a NaI(Tl) detector for in situ radioactivity measurements in the marine environment. Applied Radiation and Isotopes, 98: 44-48.
  • [8] Duc Tam H., Hai Yen N.T., Tran, L.B., Dinh Chuong, H., Thien Thanh, T. 2017. Optimization of the Monte Carlo simulation model of NaI(Tl) detector by Geant4 code. Applied Radiation and Isotopes, 130: 75–79.
  • [9] Wang J., Zhang Y., Liu D., Wu B., Zhang Y., Jiang H., 2018. Automated spectra analysis of in situ radioactivity measurements in the marine environment using NaI(Tl) detector. Applied Radiation and Isotopes, 141: 88–94.
  • [10] Hamzawy A., 2010. Simple analytical formula to calculate γ-ray cylindrical detectors efficiencies. Nuclear Instruments and Methods in Physics Research Section A, 624 (1): 124-129.
  • [11] Chuong H.D., Nguyen Q.H., Nguyen T.M.L., Nguyen V.H. 2019. Validation of gamma scanning method for optimizing NaI(Tl) detector model in Monte Carlo simulation. Applied Radiation and Isotopes, 149: 1-8
  • [12] Zikovsky L., Chah B. 1988. A computer program for calculating Ge(li) detector counting efficiencies with large volume samples. Nuclear Instruments and Methods in Physics Research, A263 (2-3): 483-486.
  • [13] Özmutlu C., Ortaovalı A.Z. 1976. Calculation of total and full energy peak efficiencies of Ge(Li) and NaI(Tl) detectors by introducing the mean chord length. Nuclear Instruments and Methods, 149-155.
  • [14] Selim Y.S., Abbas M.I., Fawzy M.A. 1998. Analytical calculation of the efficiencies of gamma scintillators. Part I: Total efficiency for coaxial disk sources. Radiation Physics and Chemistry, 53: 589-592.
  • [15] Abbas M.I. 2010, A new analytical method to calibrate cylindrical phoswich and LaBr3(Ce)scintillation detectors. Nuclear Instruments and Methods in Physics Research A, 621: 413-418.
  • [16] Abbas M.I., Noureddeen S. 2011. Analytical expression to calculate total and full-energy peak efficiencies for cylindrical phoswich and lanthanum bromide scintillation detectors. Radiation Measurement, 46: 440-445
  • [17] Pomme S. 2009. Detection efficiency calculation for photons, electrons and positrons in a well detector. Part I: Analytical model. Nuclear Instruments and Methods in Physics Research A, 604: 584-591.
  • [18] Lépy M.C. et al. 2019. A benchmark for Monte Carlo simulation in gamma-ray spectrometry. Applied Radiation and Isotopes, 154 (108850): 1-7
  • [19] Ashrafi S., Anvarian S., Sobhanian S. 2006. Monte-Carlo modeling of a NaI(Tl) scintillator. Journal of Radioanalytical and Nuclear Chemistry, 269 (1): 95–98.
  • [20] Garnett R., Prestwich W.V., Atanackovic J., Wong M., Byun S.H. 2017. Characterization of a LaBr3(Ce) detector for gamma-ray spectrometry for CANDU power reactors. Radiation Measurements, 106: 628-631.
  • [21] Zhang J., Zhang P., Zhang Y., Yang J., Yuan G., Song X., Li X., Zhou Y. 2019. Geant4 simulation study on detection efficiencies of the Compton suppression system at the HL-2A tokamak. Applied Radiation and Isotopes, 150: 63-69.
  • [22] Wirawan R., Angraini L.M., Qomariyah N., Waris A., Djamal M. 2020. Gamma backscattering analysis of flaw types and orientation based on Monte Carlo Geant4 simulations. Applied Radiation and Isotopes, 155 (108924): 1-7.
  • [23] Open Gate Collaboration “Users Guide V8.0 From Wiki OpenGATE”. 2018. http://www.opengatecollaboration.org/sites/default/files/GATE-UsersGuideV8.0.pdf (Accessed July 2018).
  • [24] Cesana A., Terrani M. 1977. Gamma-ray Activity Determination in Large Volume Samples with a Ge-Li Detector. Analytical Chemistry, 49 (8): 1156-1159.
  • [25] Nakamura T. 1972. Monte Carlo calculation of efficiencies and response functions of NaI(Tl) crystals for thick disk gam-ray sources and its application to Ge(Li) detectors. Nuclear Instruments and Methods, 105: 77-89.
  • [26] Belluscio M., DeLeo R., Pantaleo A., Vox A. 1974. Efficiencies and response functions of NaI(T1) crystals for gamma rays from thick disk sources. Nuclear Instruments and Methods, 118: 553-563.
  • [27] Vegors Jr, S.H, Marsden, L.L, Heath, R.L. 1958. Calculated efficiencies of cylindrical radiation detectors. AEC Research and Development Report, 1958, IDO-16370.
  • [28] Heath R.L. 1964. Scintillation spectrometry. Vol. 1, IDO-16880-1.
  • [29] Miller W.F., Snow W.J., 1961. NaI and CsI efficiencies and photofractions for gamma-ray detection. Nucleonics, 19 (11): 174.
  • [30] ROOT Date Analysis Framework user’s guide. 2018. https://root.cern.ch/root/htmldoc/guides/users-guide/ROOTUsersGuide.html (Accessed September 2018).