Isparta (GB Türkiye) Volkanik Alanında Yapı Malzemesi Olarak Kullanılan Pliyo-Kuvaterner yaşlı Volkanik ve Piroklastik Kayaçlardaki Yüksek Radyasyonun İncelenmesi

Isparta bölgesinde (GB Türkiye), genellikle yapı hammaddesi olarak kullanılan, Pliyo-Kuvaterner yaşlı volkanik ve piroklastik kayaçlarda belirlenmiş olan mevcut doğal radyoaktivite ( 40K, 238U, 232Th) ölçümleri, radyum eşdeğer aktivite değerlerinin, uluslararası kabul edilebilir üst limitlerine ve potansiyel bir radyasyon riskine yakın değerler olduğunu açığa çıkarmıştır. Türkiye’deki eşdeğer materyallere göre üç kat fazla değerler taşıyan bu volkanik materyallerdeki yüksek radyasyon seviyelerine neyin sebep olduğunu çözümlemek için, burada, onları üreten mağmalar ve türedikleri kaynak arasındaki ilişki araştırılmıştır. Son güncel volkanolojik çalışmalar, Isparta volkanizmasının jenezini potasik ve ultrapotasik mağmaların kontrol ettiğini göstermiştir. Potasyumca zengin karakterleri ve yüksek konsantrasyonlardaki radyojenik element (örn., Th ve U) ve toplam nadir toprak element (∑NTE) içerikleri, onların en tanımlayıcı özellikleridir. Bu karakteristikler aynı zamanda, yüksek radyasyon seviyeli bazı karbonatitlerin (örn., Norveç ve Kenya karbonatitlerinin) karakteristiklerine benzerdir. Bunu destekleyecek şekilde, son zamanlardaki araştırmalar, Isparta potasik volkanizmasının orjininin, karbonatiteriyikleriyle etkileşmiş olan yaygın ve zenginleşmiş bir manto kaynağıyla ilişkili olduğunu açığa çıkarmıştır. Bunun bir sonucu olarakta, karbonatitik eriyikler, manto kaynağına jeokimyasal etkilerini bırakmış ve bu manto kaynağının kısmi ergimeside, bölgede K, NTE, Th ve U’ca zengin, yüksek radyasyon seviyeli volkanik materyalleri üretmiştir. Bu sonuçlar, karbonatitlerle etkileşmiş bir manto kaynağının, Isparta volkanik ve piroklastik kayaçlarının sadece belirgin elementlerce (örn, Th, U, NTE) zenginleşmelerinde değil aynı zamanda yüksek radyoaktivite seviyelerinde de anahtar bir rol oynadığına işaret etmektedir. Burada ayrıca, yapı malzemesi olarak kullanılan volkanik ve piroklastik kayaçlardaki yüksek radyasyonun potansiyel bir riski, karbonatitlerle modifiye olmuş bir manto kaynağından türemiş potasik mağmaların yüzeylendiği herhangi bir volkanik bölgeden beklenebileceğine de dikkat çekilmektedir.

Investigation of the High Radiation Levels in Plio-Quaternary Volcanic and Pyroclastic Rocks Used as Building Raw Materials in Isparta Volcanic Area, SW Turkey

Available natural radioactivity (40K, 238U, 232Th) measurements on Plio-Quaternary volcanic and pyroclastic rocks,which are usually used as building raw materials, from the Isparta region of SW Turkey, released that their radiumequivalent activity values are close to the internationally accepted upper limits and a potential radiation risk. Inthis study, the relationship between their magma and source characteristics has been investigated to reveal thereason of the high radiation values in these volcanic materials carrying value by more than three times theequivalent materials in Turkey. Recent volcanological studies have shown that potassic-ultrapotassic magmasgoverned the genesis of the Isparta volcanism. Potassium-rich characters and elevated concentrations of radiogenic(e.g.,Th and U) and total rare earth elements (∑REE) are their most diagnostic features. These characteristics arealso similar to some mantle-derived carbonatites (e.g., Norwage and Kenya) with high radiation levels. To supportthis, recent investigations also revealed that the origin of Isparta potassic volcanism is associated with a commonand enriched mantle source, which were interacted with carbonatite melts. Accordingly, carbonatitic melts lefttheir geochemical imprints into their mantle sources, and partial melting of this mantle source produced K, REE,Th, and U-rich volcanic materials with high radiation levels in the region. These results indicate that thecarbonatite-influenced mantle source were played a key role for not only enrichments in distinct elements (e.g.,Th, U and REE) but also high radioactivity levels in Isparta volcanic and pyroclastic rocks. In this study, attentionis drawn to the fact that a potential risk of high radiation in volcanic and pyroclastic rocks used as building rawmaterials can be expected for a given volcanic region, which include potassic magma derived from a carbonatitemodified mantle source.

___

  • [1] Kalyoncuoğlu Ü.Y. 2015. In situ gamma source radioactivity measurement in Isparta plain, Turkey. Environmental Earth Sciences, 73: 3159–3175
  • [2] Kilic A.M., Aykamis A.S. 2009. The natural radioactivity levels and radiation hazard of pumice from the East Mediterranean Region of Turkey. Bulletin of Engineering Geology and Environment, 68: 331–338.
  • [3] Akkurt İ., Uyanık N.A., Günoğlu K. 2015. Radiation dose Estimation: An in vitro measurement for Isparta-Turkey. International Journal of Computational and Experimental Science and Engineering (IJCESEN), 1 (1): 1-4.
  • [4] Trevisi R., Risica S., D’Alessandro M., Paradiso D., Nuccetelli C. 2012. Natural radioactivity in building materials in the European Union: a database and an estimate of radiological significance. Journal of Environmental Radioactivity, 105: 11-20.
  • [5] Nuccetelli C., Risica1 S., D’Alessandro M., Trevisi R. 2012. Natural radioactivity in building material in the European Union: robustness of the activity concentration index I and comparison with a room model. Journal of Radiological Protection, 32: 349–358.
  • [6] Sas Z., Doherty R., Kovacs T., Soutsos M., Sha W., Schroeyers W. 2017. Radiological evaluation of by-products used in construction and alternative applications; Part I. Preparation of a natural radioactivity database. Construction and Building Materials, 150 (30): 227-237.
  • [7] Turhan Ş., Yücel H., Gündüz L., Şahin Ş., Vural M., Parmaksiz A., Demircioglu B. 2007. Natural radioactivity measurement in pumice samples used raw materials in Turkey. Applied Radiation and Isotopes, 65 (3): 350-354.
  • [8] Turhan Ş., Atıcı E., Varinlioğlu A. 2015. Radiometric analysis of volcanic tuff stones used as ornamental and structural building materials in Turkey and evaluation of radiological risk. Radioprotection, 50 (4): 273-280.
  • [9] Turhan, S. 2008. Assessment of the natural radioactivity and radiological hazards in Turkish cement and its raw materials. Journal of Environmental Radioactivity, 99: 404-414.
  • [10] Uyanik N.A., Akkurt I., Uyanik O. 2010. A ground radiometric study of uranium, thorium and potassium in Isparta, Turkey. Annals of Geophysics, 53 (5-6): doi: 10.4401/ag-4726.
  • [11] Baykara O., Karatepe Ş., Doğru M. 2011. Assessments of natural radioactivity and radiological hazards in construction materials used in Elazig, Turkey. Radiation Measurements, 46 (1): 153- 158.
  • [12] Çetin E., Altinsoy N., Örgün Y. 2012. Natural radioactivity levels of granites used in Turkey. Radiation Protection Dosimetry, 151 (2): 299–305.
  • [13] Değerlier M. 2013. Assessment of natural radioactivity and radiation hazard in volcanic tuff stones used as building and decoration materials in the Cappadocia region, Turkey. Radioprotection, 48 (2): 215-229.
  • [14] Tatar Erkül S., Özmen S.F., Erkül F., Boztosun İ. 2016. Comparison between natural radioactivity levels and geochemistry of some granitoids in western Turkey. Turkish Journal of Earth Science, 25: 242-255.
  • [15] Özdiş B.E., Çam N.F., Canbaz B., Öztürk B.C. 2017. Assessment of natural radioactivity in cements used as building materials in Turkey. Journal of Radioanalytical and Nuclear Chemistry, 311: 307–316.
  • [16] Turhan Ş., Gündüz L. 2008. Determination of specific activity of 226Ra, 232Th and 40K for assessment of radiation hazards from Turkish pumice samples. Journal of Environmental Radioactivity, 99 (2): 332-342.
  • [17] Görmüş M., Sagular E.K., Çoban H., 2002. The Miocene sequence characteristics, its contact relation to the older rocks and lamprophyric dykes in the Dereboğazı area (S Isparta, Turkey). Ö.T. Akıncı, M. Görmüş, M. Kuşçu, R. Karagüzel, M. Bozcu (Eds.), Proceedings of the 4th International Symposium on Eastern Mediterranean Geology, Süleyman Demirel University, Isparta, Turkey, 69-90.
  • [18] Kumral M., Çoban H., Gedikoglu A., Kilinc A. 2006. Petrology and geochemistry of augite trachytes and porphyritic trachytes from the Gölcük volcanic region, Isparta, SW Turkey: A case study. Journal of Asian Earth Sciences, 27 (5): 707-716.
  • [19] Elitok Ö., Özgür N., Drüppel K., Dilek Y., Platevoet B., Guillou H., Poisson A., Scaillet S., Satır M., Siebel W., Bardintzeff J.-M., Deniel C., Yılmaz K. 2010. Origin and geodynamic evolution of late Cenozoic potassium-rich volcanism in the Isparta area, southwestern Turkey. International Geology Review, 52 (4–6): 454-504.
  • [20] Sundal A.V., Strand T. 2004. Indoor gamma radiation and radon concentrations in a Norwegian carbonatite area. Journal of Environmental Radioactivity, 77 (2): 175-189.
  • [21] Kaniua M.I., Angeyo H.K., Darby I.G., Muiac L.M. 2018. Rapid in-situ radiometric assessment of the Mrima-Kiruku high background radiation anomaly complex of Kenya. Journal of Environmental Radioactivity, 188: 47-57.
  • [22] Kumral M., Çoban H., Caran Ş. 2007. Th, U and LREE-Bearing grossular, chromian ferriallanite- (Ce) and chromian cerite-(Ce) in skarn xenoliths ejected from the Gölcük maar crater, Isparta, Anatolia, Turkey. The Canadian Mineralogist, 45: 1119-1125.
  • [23] Platevoet B., Elitok Ö., Guillou H., Bardintzeff J.-M., Yağmurlu F., Nomade S., Poisson A., Deniel C., Özgür N. 2014. Petrology of Quaternary volcanic rocks and related plutonic xenoliths from Gölcük Volcano, Isparta Angle, Turkey: origin and evolution of the high-K alkaline series. Journal of Asian Earth Sciences, 92: 53-76.
  • [24] Caran Ş. 2016. Mineralogy and petrology of leucite ankaratrites with affinities to kamafugites and carbonatites from the Kayıköy area, Isparta, SW Anatolia, Turkey: implications for the influences of carbonatite metasomatism into the parental mantle sources of silica-undersaturated potassic magmas. Lithos, 256–257: 13-25.
  • [25] Yılmaz K. 2019. Geochemistry of ultramafic, mafic, and felsic xenoliths from the Gölcük (Isparta, SW Turkey) alkali rocks: genetic relationship with arc magmas. Arabian Journal of Geosciences, 12: 306. https://doi.org/10.1007/s12517-019-4461-6
  • [26] Uyanık N.A., Uyanık O., Akkurt İ. 2013. Micro-zoning of the natural radioactivity levels and seismic velocities of potential residential areas in volcanic fields: The case of Isparta (Turkey). Journal of Applied Geophysics, 98: 191-204.
  • [27] Çoban H., Topuz G., Roden M.F., Hoang N., Schwarz W.H. 2019.40Ar39Ar dating and petrology of monzonite ejecta in tephra from Quaternary Gölcük volcano (Isparta, SW Turkey): tear-related contrasting metasomatic symptoms in extensional mantle-derived magmas. Lithos, 330–331: 160-176.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü