Myriophyllum spicatum’un Süperoksit Dismutaz Enzim Aktivitesi, Lipid Peroksidasyonu ve Hidrojen Peroksit Seviyesi Üzerine Nano ve Mikro Bor Partiküllerinin Etkisi

Bitkiler, karşılaştıkları stres faktörleri karşısında antioksidan enzim savunması ile karşılık verir. Bu enzimlerden birisi süperoksit dismutaz (SOD) olup süperoksit radikalini yok etmeden sorumludur. Lipid peroksidasyonu, reaktif oksijen türlerinin (ROT)'nin membranın lipid tabakasının peroksidasyonu sonucu olarak hücre membran sistemlerinde metabolik değişikliklere yol açan oksidatif hasarlardır. Bu çalışmada, Myriophyllum Spicatum 72 saat boyunca nano ve mikro B partiküllerinin 50, 100 ve 200 ml-1 konsantrasyonlarında maruz bırakılmıştır. Yapılan istatistik çalışmasında, kontrol grubuna göre nano ve mikro B partiküllerinin MDA, SOD, H2O2 değerleri açısından tüm maruz kalan gruplarda önemli farklılıklar olduğu tespit edilmiştir (p

Effect of Nano and Micro-Particle Boron on Hydrogen Peroxide and Lipid Peroxidation Enzyme Actıvıty Superoxıde Dismutase of Myriophyllum Spicatum

Plants respond with antioxidant enzyme defense against the stress factors they meet. One of these enzymes is superoxide dismutase (SOD) and is responsible for eliminating the superoxide radical. Lipid peroxidation is the oxidative damage caused by reactive oxygen species (ROS) metabolic changes in cell membrane systems resulting in peroxidation of the lipid layer of the membrane. In this study, Myriophyllum spicatum were exposed to nano and micro boron particles 72 hours 50, 100 and 200 ml-1 concentration. According to the statistical study, nano and micro boron particles were significantly different in MDA, SOD, H2O2 values in all exposed groups according to control group (p

___

  • 1. Handy R.D., Owen R., Valsami-Jones E. 2008. The Ecotoxicology of Nanoparticles and Nanomaterials: Current Status, Knowledge Gaps, Challenges, and Future Needs, Ecotoxicology, 17: 315-325.
  • 2. Donaldson K., Stone V., Tran C.L., Kreyling W., Borm P.J.A. 2004. Nanotoxicology, Occup. Environ. Med., 61: 727-728.
  • 3. Juhel G., Batisse E., Hugues Q., Daly D., Van Pelt N.A.M.F., O’Halloran J., Jansen A.K.M., 2011. Alumina Nanoparticles Enhance Growth of Lemna Minor, Aquatic Toxicology, 105: 328-336.
  • 4. Bekish Y.N., Poznyak S.K., Tsybulskaya L.S., Gaevskaya T.V. 2010. Electrodeposited Ni-B Alloy Coatings: Structure, Corrosion Resistance and Mechanical Properties, Electrochim. Acta, 55: 2223- 2231.
  • 5. Van Devener B., Perez J.P.L., Jankovich, J., Anderson, S.L. 2009. Oxide-free, Catalyst-coated, Fuel-soluble, Air-stable Boron Nanopowder as Combined Combustion Catalyst and High Energy Density Fuel, Energy and Fuels, 23 (12): 6111-6120.
  • 6. Mortensen M.W., Sorensen P.G., Bjorkdahl O., Jensen M.R., Gundersen H.J.G., Bjornholm T. 2006. Preparation and Characterization of Boron Carbide Nanoparticles for Use as a Novel Agent in T Cell-guided Boron Neutron Capture Therapy, Appl. Radiat. Isotopes, 64: 315-324.
  • 7. Zhang X.W., Zou Y.J., Yan, H., Wang B., Chen G.H., Wong S.P. 2000. Electrical Properties and Annealing Effects on the Stress of RF-sputtered c-BN Films, Mater Lett., 45: 111-115.
  • 8. Nowack B., Bucheli T.D. 2007. Occurence, Behavior and Effects of Nanoparticles in the Environment, Pollution, 150: 5-22.
  • 9. Özkan Y., Altınok İ., İlhan H., Sökmen M. 2015. Determination of TiO2 and AgTiO2 Nanoparticles in Artemia Salina: Toxicity, Morphological Changes, Uptake and Deputation, Bull. Environ. Contam. Toxicology, 96 (1): 36-42.
  • 10. Özkan Y., İrende İ., Akdeniz G., Kabakçı D., Sökmen M. 2015. Evaluation of the Comparative Acute Toxic Effects of TiO2 and Ag-TiO2 and ZnO-TiO2 Composite Nanoparticles on Honey Bee (Apis Mellifera), J. Int. Evironmental Application & Science,10(1): 26-36.
  • 11. Carpita N.C., Gibeaut D.M. 1993. Structural Models of Primary Cell Walls in Flowering Plants: Consistency of Molecular-structure with the Physical Properties of Walls During Growth, Plant Journal, 3: 1-30.
  • 12. Navarro E., Baun A., Behra R., Hartmann N.B., Filser J., Miao A., et al. 2008. Environmental Behavior and Ecotoxicity of Engineered Nanoparticles to Algae, Plants and Fungi, Ecotoxicology, 17: 372-86.
  • 13. Navarro E., Piccapietra F., Wagner B., Marconi F., Kaegi R., Odzak N., et al. 2008. Toxicity of Silver Nanoparticles to Chlamydomonas Reinhardtii, Environ. Sci. Technology, 42: 8959-8964.
  • 14. Lin S., Reppert J., Hu Q., Hunson J.S., Reid M.L., Ratnikova T., et al. 2009. Uptake, Translocation and Transmission of Carbon Nanomaterials in Rice Plants, Small, 5 (10): 1128-1132.
  • 15. Liu Q., Chen B., Wang Q., Shi X., Xiao Z., Lin J., et al. 2009. Carbon Nanotubes as Molecular Transporters for Walled Plant Cells, Nano Letter, 9: 1007-1010.
  • 16. Vallyathan V., Shi X. 1997. The Role of Oxygen Free Radicals in Occupational and Environmental Lung Diseases, Environmental Health Perspectives, 105: 165-177.
  • 17. Bonner J.C. 2007. Lung Fibrotic Responses to Particle Exposure, Toxicologic Pathology, 35 (1): 148-153.
  • 18. Manke A., Wang L., Rojanasakul Y. 2013. Mechanisms of Nanoparticle-Induced Oxidative Stres and Toxicity, Biomed Research International, 2013: 1-15.
  • 19. Gill S.S., Tuteja N. 2010. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants, Plant Physiol. Biochem., 48 (12): 909-930.
  • 20. Knaapen A.M., Borm P.J.A., Albrecht C., Schins R.P.F. 2004. Inhaled Particles and Lung Cancer, Part A: Mechanisms, International Journal of Cancer, 109 (6): 799-809.
  • 21. Risom L., Møller P., Loft S. 2005. Oxidative Stress-induced DNA Damage by Particulate Air Pollution, Mutation Research, vol. 592 (1-2): 119-137.
  • 22. Oberdörster G., Oberdörster E., Oberdörster J. 2005. Nanotoxicolgy, An Emerging Discipline Evolving from Studies of Ultrafine Particles, Health Perspective, 113: 823-839.
  • 23. Daughton C.G. 2004. Non-Regulated Water Contaminants: Emerging Research, Environmental Impact Assessment Review, 24: 711-732.
  • 24. Wolverton B.C., McDonald R.C. 1975. Water Hyacinths and Alligator Weeds for Removal of Silver, Cobalt, and Strontium from Polluted Waters, NASA Tech. Memo. No. TM-X-72727.
  • 25. Wilde W.E., 1993. Benemann, J.R. Bioremoval of Heavy Metals by the Use of Microalgae, Biotechnology Advances, 11 (4): 781-812.
  • 26. Maeda S., Skaguchi T. 1990. Accumulation and Detoxification of Toxic Metal Elements by Algae in: I. Akatsuka (Ed.), Introduction to Applied Phycology, Academic Publishing, Hague.
  • 27. Dağlıoğlu Y., Altınok İ., İlhan H., Sokmen M. 2016. Determination of the Acute Toxic Effect of ZnO-TiO2 Nanoparticles in Brine Shrimp (Artemia Salina), Acta Biologica Turcica, 29 (1): 6-13.
  • 28. Grace J.B. Wetzel R.G. 1978. The Production Biology of Eurasian Watermilfoil (Myriophyllum Spicatum L.): A review, J. Aquat. Plant Manage, 16: 1-11.
  • 29. Smith C.S., Barko J.W. 1990. Ecology of Eurasian Watermilfoil, J. Aquat. Plant Manage, 28: 55- 64.
  • 30. Altınayar G. 1988. Su Yabancı Otları, T.C. Bayındırlık ve İskan Bak. Dev. Su İşleri Genel Müd. İşletme ve Bakım Dairesi Başkanlığı, Ankara.
  • 31. Aiken S.G., Newroth P.R., Wile I. 1979. The Biology of Canadian Weeds.: 34. Myriophyllum Spicatum L., Canadian Journal of Plant Science, 59: 201-215.
  • 32. Adams M.S., Titus J., McCracken M. 1974. Depth Distribution of Photosynthetic Activity in a Myriophyllum, Spicatum Community in Lake Wingra, Limnology and Oceanography, 19 (3): 377- 389.
  • 33. Barko J.W., Smart M. 1986. Sediment-related Mechanisms of Growth Limitation in Submersed Macrophytes, Ecology, 67: 1328-1340.
  • 34. Gross M.E., Meyer H., Schilling G. 1996. Release and Ecological Impact of Algicidal hydrolysable polyphenols in Myriophyllum Spicatum, First Publ.in : Phytochemistry, 41: 133-138.
  • 35. Planas D., Sarhan F., Dube L., Godmaire H., Cadieux C. 1981. Ecological Significance of Phenolic Compounds of Myriophyllum Spicatum, Verh. Int. Verein. Limnol. 21, 1492.
  • 36. Hothem S.D., Marley K.A. Larson R.A. 2003. Photochemistry in Hoagland’s Nutrient Solution, Journal of Plant Nutrition, 26 (4): 845-854 .
  • 37. Defontaine A., Lecocq M.F., Hallet J. 1991. A Rapid Miniprep Method for the Preparation of Yeast Mitochondrial DNA, Nucleic Acids Research, 19 (1): 185.
  • 38. Heath R.L., Packer L. 1968. Photoperoxidation in Isolated Chloroplast: I. Kinetics and Stoichiometry of Fatty Acid Peroxidation, Arch. Biochem. Biophys, 125: 189-198.
  • 39. Mukherjee S.P., Choudhuri M.A. 1983. Implications of Water Stress-induced Changes in the Levels of Endogenous Ascorbic Acid and Hydrogen Peroxide in Vigna Seedlings, Physiol. Plant, 58: 166-170.
  • 40. Teranishi Y., Tanaka A., Osumi M., Fukui S. 1974. Catalas Activity of Hydrocarbon Utilizing Candida Yeast, Agr. Biol. Chemistry, 38: 1213-1216.
  • 41. Beauchamp C., Fridovich I. 1971. Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels, Analytical Biochemistry, 44 (1): 276-287.
  • 42. Çolak A.D., Has B. 2016. NiFe2O4 Nanokompozitinin Olası Toksik Etkisine Karşı Olueropein’in Koruyucu Rolü, Erzincan University Journal of Science and Technology, 9 (2): 172-183.