Kudret Narı (Momordica charantia Descourt.) Meyvesinden Saflaştırılan Peroksidaz Enzimi Kullanılarak Hibrit Nano Çiçekler Sentezlenmesi ve Direct Blue 1 Gideriminde Kullanılabilirlikleri
Farklı bitkisel kaynaklardan saflaştırılan peroksidaz enzimleri verimli bir şekilde endüstriyel atıklarda yer alanboyar maddelerin gideriminde kullanılmaktadır. Ucuz ve kolay ulaşılabilir bitkisel bir kaynak olan kudret narı(Momordica charantia) meyvesi önemli bir peroksidaz kaynağıdır. Bu nedenle çalışmada kudret narı meyvesininham ve olgun halinden amonyum sülfat çöktürme yöntemi ile saflaştırılan peroksidaz enzimi kullanılarak çiçekşekilli hibrit nano yapı elde edilmesi ve enzimatik aktivitelerinin karşılaştırmalı olarak ölçülerek direct blue 1 boyagideriminde kullanılabilirlikleri hedeflenmiştir. Elde edilen verilere göre ham kudret narı meyvesinden yapılan%50 oranında protein çöktürmesi sonucu toplam protein miktarı 0,485 mg/mL bulunurken peroksidaz aktivitesi2360,9 EU/mg olarak tespit edilmiştir. Bunun yanında olgun kudret narı meyvesinden yapılan %60 oranındaprotein çöktürmesi sonucu ise toplam protein miktarı 0,232 mg/mL iken serbest peroksidaz aktivitesi 7719,30EU/mg olarak tespit edilmiştir. Farklı büyüme safhalarında yer alan meyvelerden optimum koşullardasaflaştırılmış peroksidaz enzimleri enzim-inorganik hibrit nano çiçek sentez yöntemi ile immobilize edildiğindeserbest formlarına göre daha yüksek enzimatik aktivite sergilemişlerdir. En yüksek peroksidaz aktivitesi olgunmeyvede ve hibrit nano çiçek formunda (19661,6 EU/mg) görülmüştür. Ayrıca çalışmada tekstil endüstrisindeyaygın olarak kullanılan Direct Blue 1 boyasının giderimi için hibrit nano çiçeklerin serbest peroksidaz enzimleriile karşılaştırmalı olarak kullanılabilirlikleri araştırılmıştır. Özellikle ham meyve peroksidazı kullanılaraksentezlenen hibrit nano çiçek formunun daha fazla boya giderimi yaptığı tespit edilmiştir.
Synthesis of Hybrid Nanoflowers Using The Purified Bitter Gourd (Momordica charantia Descourt.) Peroxidase and its Usability Of Direct Blue 1 Decolorization
Peroxidase enzymes are purified from different plant sources are used efficiently for the removal of dyes in industrial wastes. The fruit of bitter gourd (Momordica charantia), an inexpensive and easily accessible vegetable, is an important source of peroxidase. For this reason, the aim of this study was to investigate hybrid nanoflower by using purified peroxidase enzyme from green and ripe form of bitter gourd via ammonium sulphate precipitation method, and to compare their enzymatic activities by direct blue 1 dye removal. According to the data, total protein content was found to be 0.485 mg/mL and peroxidase activity was found to be 2360.9 EU/mg as a result of 50% protein precipitation made from green bitter gourd. However; total protein amount was 0.232 mg/mL and freeperoxidase activity was determined as 7719.30 EU/mg as a result of 60% protein precipitation made from ripe bitter gourd. Peroxidase enzymes which were purified from bitter gourd in different growth stages under optimum conditions showed higher enzymatic activity compared to free forms when immobilized via enzyme-inorganic hybrid nanoflower synthesis method. The highest peroxidase activity was seen in mature fruit and hybrid nanoflower form (19661, 6 EU/mg). In addition, the usability of hybrid nanoflowers was investigated compared to the free purified peroxidase for removal of Direct Blue 1 dye widely used in textile industry. It was determined that hybrid nanoflower form synthesized especially by using ripe bitter gourd peroxidase had more dye removal.
___
- [1] Husain Q., Jan U. 2000. Detoxification of phenols and aromatic amines from polluted wastewater by using phenol oxidases. J Sci Ind Res., 59: 286-293.
- [2] Duran N., Esposito E. 2000. Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B: Environ., 28: 83-99.
- [3] Torres E., Bustos-Jaimes I., Le Bogne S. 2003. Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl. Catal. B: Environ., 46: 1-15.
- [4] Oller I., Malato S., Sánchez-Pérez J. 2011. Combination of advanced oxidation processes and biological treatments for wastewater decontamination-a review. Science of the total environment, 409 (20): 4141-4166.
- [5] Ahmed S., Rasul M.G., Brown R., Hashib M.A. 2011. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review. Journal of Environmental Management, 92 (3): 311-330.
- [6] Bhunia A, Durani S., Wangikar P.P. 2001. Horseradish peroxidase catalyzed degradation of industrially important dyes. Biotechnol. Bioeng., 72: 562-567.
- [7] Bilal M., Iqbal H.M., Shah S.H., Hu H., Wang W., Zhang X. 2016. Horseradish peroxidaseassisted approach to decolorize and detoxify dye pollutants in a packed bed bioreactor. Journal of Environmental Management, 183: 836-842.
- [8] Altinkaynak C., Tavlasoglu S., Kalin R., Sadegihan N., Özdemir H., Ocsoy I., Özdemir N. 2017. A Hierarchical Assembly of Flower-Like Hybrid Turkish Black Radish Peroxidase-Cu2+ Nanobiocatalyst and Its Effective Use in Dye Decolorization. Chemosphere, 182: 122-128.
- [9] Sassolas A., Blum L.J., Leca-Bouvier B.D. 2012. Immobilization strategies to develop enzymatic biosensors. Biotechnology Advances, 30: 489-511.
- [10] Kim J., Grate J.W., Wang P. 2006. Nanostructures for Enzyme Stabilization. Chemical Engineering Science, 61: 1017-1026.
- [11] Altinkaynak C., Tavlasoglu S., Özdemir N., Ocsoy I. 2016. A new generation approach in enzyme immobilization: Organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability. Enzyme Microb Technol., 93-94:105-112.
- [12] Ge J., Lei J., Zare R.N. 2012. Protein–inorganic hybrid nanoflowers. Nature Nanotechnology, 428-432.
- [13] Altinkaynak C., Kocazorbaz E., Özdemir N., Zihnioglu F. 2018. Egg White Hybrid Nanoflower (EW-Hnf) With Biomimetic Polyphenol Oxidase Reactivity: Synthesis, Characterization and Potential Use in Decolorization of Synthetic Dyes. Int. J. Biol. Macromol., 109: 205-211.
- [14] Zhu X., Huang J., Liu J., Zhang H., Jiang J., Yu R. 2017. A dual enzyme–inorganic hybrid nanoflower incorporated microfluidic paper-based analytic device (μPAD) biosensor for sensitive visualized detection of glucose. Nanoscale, 9: 5658-5663.
- [15] Jiao J., Xin X., Wang X., Xie Z., Xia C., Pan W. 2017. Self-assembly of biosurfactant-inorganic hybrid nanoflowers as efficient catalysts for degradation of cationic dyes. RSC Adv., 7: 43474- 43482.
- [16] Gulmez C., Altinkaynak C., Özdemir N., Atakisi O. 2018. Proteinase K hybrid nanoflowers (PhNFs) as a novel nanobiocatalytic detergent additive. International Journal of Biological Macromolecules, 119: 803-810.
- [17] Jun C., Shao M.Y., Peng Z. 2006. Horseradish peroxidase immobilized on aluminum-pillared interlayered clay for the catalytic oxidation of phenolic wastewater. Water Research, 40: 283-290.
- [18] Somtürk B., Kalın R., Özdemir N. 2014. Purification of peroxidase from red cabbage (Brassica oleracea var. capitata f. rubra) by affinity chromatography. Applied Biochemistry Biotechnology, 173: 1815-1828.
- [19] ShaffIqu T.S., Roy J.J., Nair R.A., Abraham T.E. 2002. Degradation of textile dyes mediated by plant peroxidases. Applied Biochemistry and Biotechnology, 102-103: 315-326.
- [20] Baldemir A., Ekinci K., İlgün S., Dalda A., Yetişir, H. 2018. Momordica charantia L. (kudret narı) meyvelerinin toplam fenolik madde içerikleri ve antioksidan kapasitelerinin değerlendirilmesi. Derim, 35 (1): 45-50.
- [21] Nagarani G., Abirami A., Siddhuraju P. 2014. A comparative study on antioxidant potentials, inhibitory activities against key enzymes related to metabolic syndrome, and antiinflammatoryactivity of leaf extract from different Momordica species. Food Science and Human Wellness, 3: 36-46.
- [22] Akhtar S., Ali Khan A., Husain, Q. 2005. Simultaneous purification and immobilization of bitter gourd (Momordica charantia) peroxidases on bioaffinity support. Journal of chemical technology and biotechnology, 80 (2): 198-205.
- [23] Panadare Dhanashree C., Rathod Virendra K. 2017. Extraction of peroxidase from bitter gourd (Momordica charantia) by three phase partitioning with dimethyl carbonate (DMC) as organic phase. Process biochemistry, 61: 195-201.
- [24] Altinkaynak C., Yilmaz I., Koksal Z., Özdemir H., Ocsoy I., Özdemir N. 2016. Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability. Int. J. Biol. Macromolec., 84: 402-409.
- [25] Altinkaynak C., Tavlasoglu S., Özdemir N., Ocsoy I. 2016. A new generation approach in enzyme immobilization: organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability. Enzyme Microb. Technol., 93-94: 105-112.
- [26] Zian L., Yun X., Yin Y., Hu W., Liu W., Yang H. 2014. Facile synthesis of Enzyme-inorganic hybrid nanoflowers and its application as colorimetric platform for visual detection of hydrogen perosixde and phenol. ACS Applied Materials & Interfaces, 6: 10775-10782.
- [27] Akhtar S., Ali Khan A., Husain Q. 2005. Partially purified bitter gourd (Momordica charantia) peroxidase catalyzed decolorization of textile and other industrially important dyes. Bioresour Technol., 96 (16): 1804-1811.
- [28] Akhtar S., Khan A.A., Husain Q. 2005. Potential of immobilized bitter gourd (Momordica charantia) peroxidase in tge decolorization and removal of textile dyes from polluted wastewater and dyeing effluent. Chemosphere, 60: 291-301.