Bitlis’te Yetişen Bazı Bitkilerde Radon Konsantrasyonlarının İstatistiksel Olarak Analizi

Bu çalışmada, Bitlis’te yetişen bazı bitkilerin radon (222Rn) konsantrasyonlarının istatistiksel olarak analizi yapıldı. Radon konsantrasyonları Radosys radon ölçüm sistemi ile belirlendi. PR15 numaralı örneğin (Urtica) en yüksek radon konsantrasyonuna (997,67 ±28,90 Bq/m3) ve PR13 numaralı örneğin (Polygonum cognatum) en düşük radon konsantrasyonuna (255,70 ± 14,63 Bq/m3) sahip olduğu görülmüştür. Radon konsantrasyon seviyeleri ile lokasyonlar arasındaki ilişki istatiksel olarak incelenmiştir. Bu amaçla, varyans analizi (ANOVA) yöntemi kullanılmıştır.

The Analyzing Statistically of Radon Concentrations in Some Plants Growing in Bitlis

In this study, the analyzing statistically of radon (222Rn) concentrations of some plant samples growing in Bitlis were made. The radon concentrations were determined with Radosys radon measurement system. It was seen that the sample with number PR15 (Urtica) has the highest radon concentration (997.67 ± 28.90 Bq /m3) and the sample with number PR13 (Polygonum cognatum) has the lowest radon concentration (255.70 ± 14.63 Bq /m3). It has been analyzed as statistically relationship between radon concentration levels with locations. With this purpose, it has been used method of Analysis of Variance (ANOVA).

___

  • [1] UNSCEAR. 1988. Sources and effects of ionising radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. Annex A, United Nations, New York.
  • [2] Elzain A.E.A. 2015. Estimation of Soil Gas Radon Concentration and the Effective Dose Rate by Using SSNTDs. International Journal of Scientific and Research Publications, 5 (2): 1-5.
  • [3] UNSCEAR. 2000. Sources and effects of ionising radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations, New York.
  • [4] Arafa W. 2004. Specific Activity and Hazards of Granite Samples Collected from The Eastern Desert of Egypt.. J. Environ. Radioact., 75: 315–327.
  • [5] Rahman S.U., Rafique M., Matiullah A.J. 2010. Radon Measurement Studies in Workplace Buildings of The Rawalpindi Region and Islamabad Capital Area, Pakistan. Build. Environ., 45: 421–426.
  • [6] Agarwal T.K., Sahoo B.K., Gaware J.J., Joshi M., Sapra B.K. 2014. CFD Based Simulation of Thoron (220Rn) Concentration in a Delay Chamber for Mitigation Application. J. Environ. Radioact, 136: 16–21.
  • [7] Ghany H.A.A., Aassy I.E.E., Ibrahim E.M., Gamil S.H. 2018. White Sand Potentially Suppresses Radon Emission from Uranium Tailings. Radiat. Phys. Chem., 144: 100–105.
  • [8] Dieguez-Elizondo P.M., O´Donuhoe P.G., Gil-Lopez T., Castejon-Navas J., Gálvez-Huerta M.A. 2019. Calculation Methods of Radon-222 Radiological Activity for NORM Plant with Ventilation. Journal of Petroleum Science and Engineering, 183 (106360): 1-9.
  • [9] Little J.B. 1997. What Are The Risks of Low-Level Exposure to a Radiation from Radon? P. Natl. Aca. Sci. USA, 94: 5996–5997.
  • [10] ICRP., 2008. Nuclear decay data for dosimetric calculations. Ann. ICRP, 38: 7–96.
  • [11] Li P., Zhang R., Zheng G. 2018. Genetic and Physiological Effects of the Natural Radioactive Gas Radon on the Epiphytic Plant Tillandsia Brachycaulos. Plant Physiology and Biochemistry, 132: 385-390.
  • [12] Kılıç Ö. 2015. Bitlis Kaynak Sularında Radon Seviyesinin Belirlenmesi. Bitlis Eren Üniversitesi, Fen Bilimleri Enstitüsü, Ders Semineri, Bitlis.
  • [13] http://www.mta.gov.tr/v2.0/bolgeler/van/index.php?id=bitlis (Erişim tarihi: 30.03.2015).
  • [14] Kılıç Ö. 2016. Bitlis’te Yetişen Bazı Tıbbi ve Aromatik Bitkilerde Radon Seviyesinin Belirlenmesi. Bitlis Eren Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 46s, Bitlis.
  • [15] Şahin Bal S., Kılıç Ö., Gönültaş F. 2017. Bitlis Kaynak Sularında Radon Konsantrasyonunun Belirlenmesi. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21 (3): 302-306.
  • [16] Radosys. 2011. Radosys Kullanma Kılavuzu, Hungary: Radosys.
  • [17] Erol H. 2010. SPSS Paket Programı ile İstatistiksel Data Analizi. Nobel kitapevi, Adana.
  • [18] Sussa F.V., Damatto S.R., Alencar M.M., Mazzilli B.P., Silva P.S.C. 2013. Natural Radioactivity Determination in Samples of Peperomia Pellucida Commonly Used as a Medicinal Herb. Journal of Environmental Radioactivity, 116: 148-151.
  • [19] Njinga R.L., Jonah S.A., Gomina M. 2015. Preliminary Investigation of Naturally Occurring Radionuclides in Some Traditional Medicinal Plants Used in Nigeria, Journalof Radiation Research and Applied Sciences, 8: 208-215.
  • [20] Chandrashekara K., Somashekarappa H.M. 2016. Estimation of Radionuclides Concentration and Average Annual Committed Effective Dose Due to Ingestion for Some Selected Medicinal Plants of South India. Journal of Radiation Research and Applied Sciences, 9: 68-77.
  • [21] Okeji M.C., Kenneth K.A., Felicitas U.I. 2012. Natural Radioactivity in Cultivated Land in the Vicinity of a Phosphate Fertilizer Plant in Nigeria. Radiation Physics and Chemistry, 81: 1823–1826.
  • [22] Alsaffar M.S., Jaafar M.S., Kabir N.A., Ahmad N. 2015. Distribution of 226Ra, 232Th and 40K in Rice Plant Components and Physico-Chemical Effects of Soil on Their Transportation to Grains. Journal of Radiation Research and Applied Sciences, 8: 300-310.