h- Stability of Functional Dynamic Equations on Time Scales by Alternative Variation of Parameters

h- Stability of Functional Dynamic Equations on Time Scales by Alternative Variation of Parameters

In this paper, we concentrate on nonlinear functional dynamic equations of the form x^∆ (t)=a(t)x(t)+f(t,x(t)), t∈T, on time scales and study h-stability, which implies uniform exponential stability, uniform Lipschitz stability, or uniform stability in particular cases. In our analysis, we use an alternative variation of parameters, which enables us to focus on a larger class of equations since the dynamic equations under the spotlight are not necessarily regressive. Also, we establish a linkage between uniform boundedness and h-stability notions for solutions of dynamic equations under sufficient conditions in addition to our stability results.

___

  • [1] S. Hilger, “Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten”, Ph.D. Dissertation, Universität Würzburg, Institut für Mathematik, Würzburg, Germany, pp. 1-141, 1988.
  • [2] F. M. Atıcı, D. C. Biles, and A. Lebedinsky, “An application of time scales to economics”, Math. Comput. Model., vol. 43, no. (7-8), pp. 718-726, 2006, https://doi.org/10.1016/j.mcm.2005.08.014.
  • [3] F. M. Atıcı and N. Turhan, “Sequential decision problems on isolated time domains”, J. Math. Anal. Appl., vol. 388, no. 2, pp. 753-759, 2012, https://doi.org/10.1016/j.jmaa.2011.09.068.
  • [4] J. Y. Chen and Y. Zhang, “Time-scale version of generalized Birkhoffian mechanics and its symmetries and conserved quantities of Noether type”, Adv. Math. Phy., vol. 2021, 2021, Article ID 9982975, https://doi.org/10.1155/2021/9982975.
  • [5] A. K. Abraehim, A. K. Jaber, and R. Al-Salih, “Flow optimization in dynamic networks on time scales”, J. Phys. Conf. Ser., vol. 1804, no. 1, 7 pages, 2021, https://doi.org/10.1088/1742-6596/1804/1/012025.
  • [6] M. Bohner, S. Streipert, and D. F. M. Torres, “Exact solution to a dynamic SIR model”, Nonlinear Anal. Hybrid Syst., vol. 32, pp. 228-238, 2019, https://doi.org/10.1016/j.nahs.2018.12.005.
  • [7] X. Chen, C. Shi, and D. Wang, “Dynamic behaviors for a delay Lasota-Wazewska model with feedback control on time scales”, Adv. Difference Equ., vol. 17, 13 pages, 2020, https://doi.org/10.1186/s13662- 019-2483-8.
  • [8] E. Pawłuszewicz, “Observability of Nonlinear Control Systems on Time Scales-Sufficient Conditions”. in: Mathematical Control Theory and Finance, Edited by Sarychev A., Shiryaev A., Guerra M., Grossinho MR., Springer, Berlin, Heidelberg, pp. 325-335, 2008. https://doi.org/10.1007/978-3-540- 69532-5_18.
  • [9] Ö. Öztürk and H. M. Güzey, “Optimal control of quadrotor unmanned aerial vehicles on time scales”, Int. J. Difference Equ., vol. 13, no. 1, pp. 41-54, 2018.
  • [10] D. R. Poulsen, J. M. Davis, and I. A. Gravagne, “Optimal control on stochastic time scales”, IFAC- PapersOnLine, vol. 50, no. 1, pp. 14861-14866, 2017, https://doi.org/10.1016/j.ifacol.2017.08.2518.
  • [11] C. Hoffacker and C. C. Tisdell, “Stability and instability for dynamic equations on time scales”, Comput. Math. Appl., vol. 49, no. 9-10, pp. 1327-1334, 2005, https://doi.org/10.1016/j.camwa.2005.01.016.
  • [12] H. Wu and Z. Zhou, “Stability for first order delay dynamic equations on time scales”, Comput. Math. Appl., vol. 53, no. 12, pp. 1820-1831, 2007, https://doi.org/10.1016/j.camwa.2006.09.011.
  • [13] J. Zhang and M. Fan, “Boundedness and stability of semi-linear dynamic equations on time scales”, Progress in Qualitative Analysis of Functional Equations, 1786, pp. 45-56, 2012.
  • [14] E. Akın-Bohner, Y. N. Raffoul, and C.C. Tisdell, “Exponential stability in functional dynamic equations on time scales”, Commun. Math. Anal., vol. 9, no 1, pp. 93-108, 2010.
  • [15] A. C. Peterson and Y. N. Raffoul, “Exponential stability of dynamic equations on time scales”, Adv. Difference Equ., vol. 2005, no. 2, 2005, Article ID 858671, https://doi.org/10.1155/ADE.2005.133.
  • [16] M. Pinto, “Perturbations of asymptotically stable differential systems”, Analysis, vol. 4, no. 1-2, pp. 161-175, 1984.
  • [17] S. K. Choi, N. J. Koo, and R. S. Ryu, “h-stability of differential systems via ?∞-similarity”. Bull. Korean Math. Soc., vol. 34, no. 3, pp. 371-383, 1997.
  • [18] H. Damak, M. A. Hammmami, and A. Kicha, “h-stability and boundedness results for solutions to certain nonlinear perturbed systems”, Mathematics for Applications, vol. 10, pp. 9-23, 2021, https://doi.org/10.13164/ma.2021.02.
  • [19] S. K. Choi, N. J. Koo, and S. M. Song, “h-stability for nonlinear perturbed difference systems”, Bull. Korean Math. Soc., vol. 41, no. 3, pp. 435-450, 2004, https://doi.org/10.4134/BKMS.2004.41.3.435.
  • [20] S. K. Choi, N. J. Koo, and D. M. Im, “h-stability for linear dynamic equations on time scales”, J. Math. Anal. Appl., vol. 324, no. 1, pp. 707-720, 2006, https://doi.org/10.1016/j.jmaa.2005.12.046.
  • [21] S. K. Choi, Y. H. Goo, and N. Koo, “h-stability of dynamic equations on time scales with nonregressivity”, Abstr. Appl. Anal., vol. 2008, 2008, Article ID 632473, https://doi.org/10.1155/2008/632473.
  • [22] S. K. Choi, Y. Cui, and N. Koo, “Variationally stable dynamic systems on time scales”, Adv. Difference Equ., vol. 2012, no. 1, 2012, Article ID 129, https://doi.org/10.1186/1687-1847-2012-129.
  • [23] B. B. Nasser, M. Djemai, M. Defoort, and T. M. Laleg-Kirati, “Time scale state feedback h-stabilization of linear systems under Lipschitz-type disturbances”, Internat. J. Systems Sci., vol. 52, no. 8, pp. 1719- 1729, 2021, https://doi.org/10.1080/00207721.2020.1869345.
  • [24] B. Neggal, K. Boukerrioua, B. Kilani, and I. Meziri, “h-stability for nonlinear abstract dynamic equations on time scales and applications”, Rend. Circ. Mat. Palermo (2), vol. 69, no. 3, pp. 1017-1031, 2020, https://doi.org/10.1007/s12215-019-00452-x.
  • [25] B. B. Nasser, K. Boukerrioua, M. Defoort, M. Djemai, M. A. Hammmami, and T. M. Laleg-Kirati, “Sufficient conditions for uniform exponential stability and h-stability of some classes of dynamic equations on arbitrary time scales”, Nonlinear Anal. Hybrid Syst., vol. 32, pp. 54-64, 2019, https://doi.org/10.1016/j.nahs.2018.10.009.
  • [26] A. Gopalsamy and S. Sariyasa, “Time delays and stimulus dependent pattern formation in periodic enviroments in isolated neurons”, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, vol. 9, pp. 39-58, 2002.
  • [27] S. N. Chow, “Existence of periodic solutions of autonomous functional differential equations”, J. Differential Equations, vol. 15, pp. 350-378, 1974.
  • [28] C. W. Clark, “A delayed- recruitment model of population dynamics, with an application to baleen whale populations”, J. Math. Biol., vol. 3, pp. 381-391, 1976, https://doi.org/10.1007/BF00275067.
  • [29] Y. N. Raffoul, “Stability and boundedness in nonlinear and neutral difference equations using new variation of parameters formula and fixed point theory”, Cubo, vol. 21, no. 3, pp. 39-61, 2019, https://doi.org/10.4067/s0719-06462019000300039.
  • [30] Y. N. Raffoul, “Nonlinear functional delay differential equations arising from population models”, Adv. Dyn. Syst. Appl., vol. 14, no. 1, pp. 67-81, 2019..
  • [31] A. Larraín-Hubach and Y. N. Raffoul, “Boundedness, periodicity and stability in nonlinear delay differential equations”, Adv. Dyn. Syst. Appl., vol. 15, no. 1, pp. 29-37, 2020.
  • [32] H. C. Koyuncuoğlu, “Some qualitative results for functional delay dynamic equations on time scales”, Turkish J. Math., vol. 45, no. 1, pp. 1985-2007, 2021, https://doi.org/10.3906/mat-2102-106.
  • [33] M. Bohner and A. C. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001.
  • [34] H. K. Khalil, Nonlinear Systems, Prentice Hall, New York, 1-734, 2002.
  • [35] M. Adıvar and Y. N. Raffoul, “Stability and periodicity in dynamic delay equations”. Comput. Math. Appl., vol. 58, no. 2, pp. 264-272, 2009, https://doi.org/10.1016/j.camwa.2009.03.065