GÖRÜNTÜ İŞLEME YÖNTEMİ İLE SİNÜZOİDAL ATALET KUVVETLERİ ALTINDA BENZİN ATOMİZASYON KALİTESİNİN BELİRLENMESİ

İçten yanmalı motorlarda enjeksiyon sistemlerinin kullanılmaya başlanmasıyla birlikte atomizasyon kalitesi önem kazanmıştır. Yüksek basınçlı pompaların ve enjektörlerin üretim teknolojilerindeki gelişmeler sayesinde püskürtme basınçları yükseltilerek atomizasyon kalitesi artırılmıştır. Mevcut durumda, Benzin Direkt Enjeksiyon (GDI) teknolojisindeki püskürtme basınçları 200 ile 800 arasında bar seviyelerine ulaşmıştır. Basınç seviyesi belirtilen basınç değerinden daha yükseğe çıkarıldığında, yüksek basınç için gerekli teknoloji nedeniyle atomizasyon kalitesinde önemli bir iyileşme sağlanamadığı ve üretim maliyetinin arttığı literatürdeki çalışmalardan anlaşılmaktadır. Bu çalışmada, atomizasyon kalitesini iyileştirmek için başka bir yöntem olarak Sinüzoidal Atalet Kuvveti (SIF) kullanılarak yakıt atomize edilmiştir. Literatürde içten yanmalı motorlarda kullanılan benzin yakıtının SIF altında atomize edilerek kullanılmasının uygunluğu ile ilgili herhangi bir çalışma bulunmamaktadır. Uygulama çalışmasında benzin yakıtı imal edilen SIF jeneratörü ile basınçsız olarak atomize edilmiş ve elde edilen damlacık görüntüleri analiz sonucu görüntü işleme yöntemi kullanılarak incelenmiştir. Analiz sonuçlarına göre, SIF yöntemi ile üretilen damlacık boyutlarının GDI yöntemi kullanılarak oluşturulan damlacık boyutlarına benzer sonuçlar verdiği gözlemlenmiştir. Bu yöntem sayesinde daha küçük damlacık boyutlarının daha düşük maliyetlerle basınç kullanılmadan elde edilebileceği ve yöntemin içten yanmalı motorlarda verimli bir şekilde uygulanabileceği belirlenmiştir.

DETERMINATION OF GASOLINE ATOMIZATION QUALITY UNDER THE SINUSOIDAL INERTIAL FORCES WITH IMAGE PROCESSING METHOD

The atomization quality has gained importance with the used of injection systems in internal combustion engines. The atomization quality has been increased by raising spray pressures by the way advances in the production technologies of high-pressure pumps and injectors. In the current situation, the spray pressures in Gasoline Direct Injection (GDI) technology have been reached bar levels between 200 and 800. When the pressure level is raised higher than the specified pressure value, it is understood from studies in the literature that the atomization quality is not provided a significant improvement and the production cost increase due to the technology required for high pressure. In this paper, the fuel has been atomized by using Sinusoidal Intertidal Forces (SIF) as another method to improve the atomization quality. In the literature, there is no any study regarding the suitability of using by atomized under SIF of the gasoline fuel used in internal combustion engines. In the application study, the gasoline fuel has been atomized without the pressure by manufactured SIF generator and the droplet images obtained analysis result has been examined by using the image processing method. According to analysis results, it has been observed that the droplets sizes produced with SIF method were similar results to the droplet sizes founded using the GDI method. It has been determined that the smaller droplet sizes can be obtained with lower costs without using pressure thanks to this method and the method can be applied efficiently in internal combustion engines.

___

  • [1] S. Sakai and D. Rothamer. 2017. Effect of Ethanol Blending on Particulate Formation from Premixed Combustion in Spark-Ignition Engines. Fuel, 196, 154–168,
  • [2] D. Zuzio, J. L. Estivalezes, P. Villedieu, and G. Blanchard. 2013. Numerical Simulation of Primary and Secondary Atomization. Comptes Rendus - Mec., 341(1–2), 15–25.
  • [3] S. M. Mousavi, R. K. Saray, K. Poorghasemi, and A. Maghbouli. 2016. A Numerical Investigation on Combustion and Emission Characteristics of a Dual Fuel Engine at Part Load Condition. Fuel, 166, 309–319.
  • [4] C. D. Rakopoulos, G. M. Kosmadakis, and E. G. Pariotis. 2009. Evaluation of a New Computational Fluid Dynamics Model for Internal Combustion Engines using Hydrogen under Motoring Conditions. Energy, 34(12), 2158–2166.
  • [5] J. Benajes, P. Olmeda, J. Martín, D. Blanco-Cavero, and A. Warey. 2017. Evaluation of swirl effect on the Global Energy Balance of a HSDI Diesel engine. Energy, 122, 168–181.
  • [6] C. Habchi, D. Verhoeven, C. Huynh Huu, L. Lambert, J. L. Vanhemelryck, and T. Baritaud. 1997. Modeling Atomization and Break up in High-Pressure Diesel Sprays’. SAE Tech. Pap., 106, 1391–1406.
  • [7] Matsumoto, T. Numerical Simulation of Two-Dimensional Faraday Waves with Phase-Field Modelling. 2011. J Fluid Mech, 686, 409–25.
  • [8] T. Kudo, K. Sekiguchi, K. Sankoda, N. Namiki, and S. Nii. 2017. Effect of ultrasonic frequency on size distributions of nanosized mist generated by ultrasonic atomization. Ultrason Sonochemistry. 37, 16–22.
  • [9] R. Rajan and A. B. Pandit. 2001. Correlations to Predict Droplet Size in Ultrasonic Atomisation. Ultrasonics, 39(4), 235–255.
  • [10] Y. Zhang, S. Yuan, and L. Wang. 2021. Investigation of Capillary Wave, Cavitation and Droplet Diameter Distribution during Ultrasonic Atomization. Exp. Therm. Fluid Sci., 120(July 2020), 110219.
  • [11] Liu, F., Kang, N., Li, Y., and Wu, Q. 2018. Experimental Investigation on the Spray Characteristics of a Droplet under Sinusoidal İnertial Force. Fuel, 226, 156-162.
  • [12] Piock, W. F., Befrui, B., Berndorfer, A., and Hoffmann, G. 2015. Fuel Pressure and Charge Motion Effects on GDI Engine Particulate Emissions. SAE International Journal of Engines, 8(2), 464-473.
  • [13] Addepalli, S. K., and Mallikarjuna, J. M. 2018. Parametric Analysis of a 4-Stroke GDI Engine using CFD. Alexandria Engineering Journal. 57(1), 23-34.
  • [14] Reddy, A. A., and Mallikarjuna, J. M. 2017. Parametric Study on a Gasoline Direct Injection Engine-a CFD Analysis (No. 2017-26-0039). SAE Technical Paper.
  • [15] Jones, T. 2010. Assessment of Technologies for İmproving Light Duty Vehicle Fuel Economy: Letter Report. The National Academies Press, https://doi.org/10.17226/12163
  • [16] Waltner, A., Lueckert, P., Schaupp, U., Rau, E., Kemmler, R., Weller, R. 2006. Future Technology of the Sparkignition Engine: Spray-Guided Direct Injection with Piezo İnjector. In: 27th Vienna Motor Symposium (2006).
  • [17] Wadekar, S., Yamaguchi, A., and Oevermann, M. 2021. Large-Eddy Simulation Study of Ultra-High Fuel Injection Pressure on Gasoline Sprays. Flow, Turbulence and Combustion, 107(1), 149-174.
  • [18] Duronio, F., De Vita, A., Montanaro, A., and Villante, C. 2020. Gasoline Direct Injection Engines–A Review of Latest Technologies and Trends. Part 2. Fuel, 265, 116947.
  • [19] Ganesan, P., Rajini, V., and Rajkumar, R. I. 2010. Segmentation and Edge Detection of Color Images using CIELAB Color Space And Edge Detectors. In INTERACT-2010 (pp. 393-397). IEEE.
  • [20] Haralick, R. M., Sternberg, S. R., and Zhuang, X. 1987. Image analysis using mathematical morphology. IEEE Transactions on Pattern Analysis and Machine İntelligence, (4), 532-550.
  • [21] Lang, R. J. 1962. Ultrasonic atomization of liquids. The Journal of the Acoustical Society of America, 34(1), 6-8.
  • [22] S. No, ‘Ürün Kodu : Opet – 220 Kurşunsuz Benzin 95 Oktan Ürün Spesifikasyonu’, 2019.
  • [23] Hu, J., Liu, B., Zhang, C., Gao, H., Zhao, Z., Zhang, F., and Wang, Y. (2019). Experimental Study on the Spray Characteristics of an Air-Assisted Fuel İnjection System using Kerosene and Gasoline. Fuel, 235, 782-794.
  • [24] Lee, S., and Park, S. 2014. Experimental study on Spray Break-up and Atomization Processes From GDI Injector Using High Injection Pressure up to 30 MPa. International Journal of Heat and Fluid Flow, 45, 14-22.