Design of a 3D Printed Open Source Humanoid Robot

Design of a 3D Printed Open Source Humanoid Robot

Nowadays, humanoid robots with great capabilities used in a variety of purposes to serve humans have become an integral part of our lives. In this study, we have developed a low-cost humanoid robot that can be fabricated with an open-source 3D printer. Firstly, the 3D-CAD model of the humanoid robot was created using source codes of the “InMoov” project which is originated by Gael Langevin who works as a designer on his project since 2012. The humanoid robot involves approximately 685 parts built from the PLA (Poly-Lactic Acid) raw material. After that, a new electronics system based on the embedded controllers which have been controlled with the python programming language has been designed. This robotic platform controlled with the help of voice commands has the capability to communicate with people. Furthermore, a skilled prosthetic hand controlled according to the commands from a smart glove, can grasp and holds objects, have been specially developed in this study. When comparing to the existing commercial humanoid robots, this humanoid robot developed as specific has a substructure which is not only low cost but also open to new improvements as well.

___

  • [1] N. Rodriguez, G. Carbone, M. Ceccarelli, “Antropomorphic design and operation of a new low-cost humanoid robot”, in The 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Pisa, Italy, 2006.
  • [2] F. Kaplan, “Who is Afraid of the Humanoid? Investigating Cultural Differences in the Acceptation of Robots”. International Journal of Humanoid Robotics, vol.1, no. 3, pp. 465-480, 2004.
  • [3] H. Cheng, G. Ji, “Design and Implementation of a Low Cost 3D Printed Humanoid Robotic Platform”. The 6th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems (CYBER), Chengdu, China, 2016.
  • [4] G. Carbone, H.O. Lim, A. Takanishi, M. Ceccarelli, “Numerical and experimental estimation of stiffness performances for the humanoid robot WABIAN-RV”. IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), Port Island, Kobe, Japan, 2003.
  • [5] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, K. Fujimura, The intelligent ASIMO: system overview and integration, Intelligent Robots and Systems, Lausanne, Switzerland, 2002.
  • [6] K. Kaneko, F. Kanehiro, S. Kajita, K. Yokoyama, K. Akachi, T. Kawasaki, S. Ota, T. Isozumi. Design of prototype humanoid robotics platform for HRP, Intelligent Robots and Systems, Lausanne, Switzerland, 2002.
  • [7] D.L Recio, L.M. Segura, E.M Segura, A. Waern, “The NAO models for the elderly”. 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Tokyo, Japan, 2013.
  • [8] J. Lafaye, D. Gouaillier, P.B. Wieber, “Linear model predictive control of the locomotion of pepper, a humanoid robot with omnidirectional wheels”. IEEE-RAS International Conference on Humanoid Robots, Madrid, Spain, 2014.
  • [9] J.H. Kim, J.H.Oh, “Torque Feedback Control of the Humanoid Platform KHR-1”, 3rd IEEE International Conference on Humanoid Robots, Karlsruhe and Munich, Germany, 2003
  • [10] M. Hackel, S. Schwope, “A Humanoid Interaction Robot for Information, Negotiation and Entertainment Use”. International Journal of Humanoid Robotics, vol. 1, no. 3, pp. 551-563, 2004.
  • [11] D. Ye, S. Sun, J. Chen, M. Luo M, “The lightweight design of the humanoid robot frameworks based on evolutionary structural optimization”. IEEE International Conference on Robotics and Biomimetics (ROBIO 2014), Bali, Indonesia, 2014.
  • [12] T. Lens, O. Stryk, “Design and Dynamics Model of a Lightweight Series Elastic Tendon-Driven Robot Arm”. IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, German, 2013.
  • [13] H Hagenaha, W. Böhma, T. Breitsprecherb, M. Merkleina, S. Artzackba, “Modelling, Construction and Manufacture of a Lightweight Robot Arm”, Procedia CIRP Intelligent Computation in Manufacturing Engineering, 12:211 – 216, 2013.
  • [14] N. Bhattacharjee, A. Urrios, S. Kang, A. Folch, “The Upcoming 3D-printing revolution in microfluidics”, Lab on a Chip; vol. 16, no.10, pp. 1720 –1742, 2016.
  • [15] K. Takagishi, S. Umezu, “Development of the Improving Process for the 3D Printed Structure”, Scientific Reports, vol. 7, no. 39852, 2017.
  • [16] L. Bechthold, V. Fischer, A. Hainzlmaier, D. Hugenroth, L. Ivanova, K. Kroth, B. Römer, E. Sikorska, V. Sitzmann, V, “3D printing: A qualitative assessment of applications, recent trends and the technology's future potential”. Commission of Experts for Research and Innovation; 17:120, Berlin, 2015.
  • [17] M. Christiano, “Introduction to 3D Printing: History, Processes, and Market Growth”, https://www.allaboutcircuits.com/news/introduction-to-3d-printing-history-processes-and-market- growth. [Accessed: 20-May-2020]
  • [18] M.F. Ashby, K. Johnson, Materials and Design, The Art and Science of Material Selection in Product Design, Butterworth-Heinman: Oxford, UK, 2013.
  • [19] D. Drummer, S. Cifuentes-Cuéllar, D. Rietzel, “Suitability of PLA/TCP for fused deposition modeling”, Rapid Prototyping Journal, vol. 18, no. 6, pp. 500-507, 2012
  • [20] C. K. Chua, C. H. Wong, W.Y. Yeong, Standards, Quality Control, and Measurement Sciences in 3D Printing and Additive Manufacturing, Academic Press: Elsevier, 2017.
  • [21] Inmoov, “Open-source 3D printed life-size robot”. http://inmoov.fr/build-yours [Accessed: 20-May- 2020]
  • [22] The Raspberry Pi Model B Card Datasheets, https://www.raspberrypi.org/documentation/hardware/raspberrypi. [Accessed: 20-May-2020]
  • [23] Arm Cortex-A53 MPCore Processor Technical Reference Manual http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0500j/CHDDCDDG.html. [Accessed: 20-May-2020]
  • [24] MG-996 High Speed Metal Gear Dual Ball Bearing Servo Motor Datasheet. http://www.towerpro.com.tw/product/mg995-robot-servo-180-rotation. [Accessed: 20-May-2020]
  • [25] HS-805BB Servo Motor Datasheet. https://www.servocity.com/hs-805bb-servo [Accessed: 20-May- 2020]
  • [26] R. Firoozian, Servo Motors and Industrial Control Theory, Springer: Berlin, Germany, 2014.