Electrospun TiO2 Nanofibers in the Presence of Avocado Seed Extract

Electrospun TiO2 Nanofibers in the Presence of Avocado Seed Extract

The electrospinning technique is particularly prominent in membrane production techniques due to its easy applicability and ability to obtain nanofibers in various diameters with high surface area. Titanium dioxide (TiO2) is often used in biomaterial technologies due to their high biocompatibility, high processability and their photocatalytic activities in waste water treatment. In this study, TTIP (Titanium tetra isopropoxide) was used as a TiO2 precursor and PVP polymer was used as a carrier polymer for electrospinning. Avocado seed extract (ASE) which is a new and valuable source of phenolic compounds was used for the coordination and reduction of TTIP. TiO2-PVP-Avocado seed extract (T/P/A) composite nanofibers were produced at different voltages, distances and polymer concentrations. Crystalline TiO2 formation was not observed in as-spun nanofibers, thus selected nanofibers were heat treated at 500oC for 3 h. Smooth and integrated TiO2 nanofibers prepared by using 5 w% PVP, at 15 kV and 15 cm distance with or without ASE were imaged by Scanning Electron Microscopy (SEM). X-ray Diffraction (XRD) patterns of heat-treated TiO2 nanofibers prepared in the presence of ASE were crystallized mainly in anatase form. However, both anatase and rutile phases were obtained in the crystalline structure of TiO2 nanofibers when ASE was not used. Specific IR vibrations of TiO2 were shown by Fourier Transform Infrared Spectroscopy (FTIR). These green synthesized electrospun TiO2 nanofibers may have potential to be used in biomaterial and engineering applications.

___

  • [1] N. Z. A. Al-Hazeem, “Nanofibers and Electrospinning Method,” in Novel Nanomaterials - Synthesis and Applications, InTech, 2018. doi: 10.5772/intechopen.72060.
  • [2] A. ElenaOprea, A. Ficai, and E. Andronescu, “Electrospun nanofibers for tissue engineering applications,” in Materials for Biomedical Engineering: Nanobiomaterials in Tissue Engineering, 2019, pp. 77–95. doi: 10.1016/B978-0-12-816909-4.00004-X.
  • [3] A. Luzio, E. V. Canesi, C. Bertarelli, and M. Caironi, “Electrospun polymer fibers for electronic applications,” Materials, vol. 7, no. 2. pp. 906–947, 2014. doi: 10.3390/ma7020906.
  • [4] R. S. Bhattarai, R. D. Bachu, S. H. S. Boddu, and S. Bhaduri, “Biomedical applications of electrospun nanofibers: Drug and nanoparticle delivery,” Pharmaceutics, vol. 11, no. 1. MDPI AG, Jan. 01, 2019. doi: 10.3390/pharmaceutics11010005.
  • [5] N. Bhardwaj and S. C. Kundu, “Electrospinning: A fascinating fiber fabrication technique,” Biotechnology Advances, vol. 28, no. 3. pp. 325–347, May 2010. doi: 10.1016/j.biotechadv.2010.01.004.
  • [6] M. Rahmati et al., “Electrospinning for tissue engineering applications,” Progress in Materials Science, vol. 117. Elsevier Ltd, Apr. 01, 2021. doi: 10.1016/j.pmatsci.2020.100721.
  • [7] H. Yu, W. Liu, D. Li, C. Liu, Z. Feng, and B. Jiang, “Targeting delivery system for Lactobacillus plantarum based on functionalized electrospun nanofibers,” Polymers (Basel), vol. 12, no. 7, pp. 1–12, Jul. 2020, doi: 10.3390/polym12071565.
  • [8] Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Compos Sci Technol, vol. 63, no. 15, pp. 2223–2253, 2003, doi: 10.1016/S0266-3538(03)00178-7.
  • [9] C. N. , Elias, J. H. C. , Lima, and R. et al. Valiev, “Biomedical applications of titanium and its alloys,” JOM, vol. 60, pp. 46–49, 2008.
  • [10] O. Kéri, P. Bárdos, S. Boyadjiev, T. Igricz, Z. K. Nagy, and I. M. Szilágyi, “Thermal properties of electrospun polyvinylpyrrolidone/titanium tetraisopropoxide composite nanofibers,” J Therm Anal Calorim, vol. 137, no. 4, pp. 1249–1254, Aug. 2019, doi: 10.1007/s10973-019-08030-0.
  • [11] K. Ghosal, C. Agatemor, Z. Špitálsky, S. Thomas, and E. Kny, “Electrospinning tissue engineering and wound dressing scaffolds from polymer-titanium dioxide nanocomposites,” Chemical Engineering Journal, vol. 358, pp. 1262–1278, Feb. 15, 2019. doi: 10.1016/j.cej.2018.10.117.
  • [12] F. Çallıoğlu C and Kesici Güler H, “Çevreci Çözücüler ile Polivinilpirolidon Nanolif Üretimi,” Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, pp. 352–366, Nov. 2019, doi: 10.29233/sdufeffd.589516.
  • [13] S. Kiennork, R. Nakhowong, R. Chueachot, and U. Tipparach, “Preparation and Characterization of Electrospun TiO2 Nanofibers via Electrospinning,” in Integrated Ferroelectrics, Sep. 2015, vol. 165, no. 1, pp. 131–137. doi: 10.1080/10584587.2015.1063915.
  • [14] O. V. Otieno et al., “Synthesis of TiO2 nanofibers by electrospinning using water-soluble Ti-precursor,” J Therm Anal Calorim, vol. 139, no. 1, pp. 57–66, Jan. 2020, doi: 10.1007/s10973-019-08398-z.
  • [15] K. Qi and J. H. Xin, “Room-temperature synthesis of single-phase anatase TiO2 by aging and its self-cleaning properties,” ACS Appl Mater Interfaces, vol. 2, no. 12, pp. 3479–3485, Dec. 2010, doi: 10.1021/am1005892.
  • [16] K. Fischer et al., “Low-temperature synthesis of anatase/rutile/brookite TiO2 nanoparticles on a polymer membrane for photocatalysis,” Catalysts, vol. 7, no. 7, Jul. 2017, doi: 10.3390/catal7070209.
  • [17] M. Taran, M. Rad, and M. Alavi, “Biosynthesis of TiO2 and ZnO nanoparticles by Halomonas elongata IBRC-M 10214 in different conditions of medium,” BioImpacts, vol. 8, no. 2, pp. 81–89, 2018, doi: 10.15171/bi.2018.10.
  • [18] Rajakumar G et al., “Solanum trilobatum extract-mediated synthesis of titanium dioxide nanoparticles to control Pediculus humanus capitis, Hyalomma anatolicum anatolicum and Anopheles subpictus.,” Parasitol Res, vol. 113, no. 2, pp. 469–479, 2014, doi: 10.1007/s00436-013-3676-9.
  • [19] P. K. Dikshit et al., “Green synthesis of metallic nanoparticles: Applications and limitations,” Catalysts, vol. 11, no. 8, Aug. 01, 2021. doi: 10.3390/catal11080902.
  • [20] M. Nadeem et al., “The current trends in the green syntheses of titanium oxide nanoparticles and their applications,” Green Chem Lett Rev, vol. 11, no. 4, pp. 492–502, Oct. 2018, doi: 10.1080/17518253.2018.1538430.
  • [21] D. Anbumani et al., “Green synthesis and antimicrobial efficacy of titanium dioxide nanoparticles using Luffa acutangula leaf extract,” J King Saud Univ Sci, vol. 34, no. 3, Apr. 2022, doi: 10.1016/j.jksus.2022.101896.
  • [22] V. Rodríguez-González, C. Terashima, and A. Fujishima, “Applications of photocatalytic titanium dioxide-based nanomaterials in sustainable agriculture,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 40, pp. 49–67, Sep. 01, 2019. doi: 10.1016/j.jphotochemrev.2019.06.001.
  • [23] B. R. Athaydes et al., “Avocado seeds (Persea americana Mill.) prevents indomethacin-induced gastric ulcer in mice,” Food Research International, vol. 119, pp. 751–760, May 2019, doi: 10.1016/j.foodres.2018.10.057.
  • [24] F. J. Segovia, G. I. Hidalgo, J. Villasante, X. Ramis, and M. P. Almajano, “Avocado seed: A comparative study of antioxidant content and capacity in protecting oil models from oxidation,” Molecules, vol. 23, no. 10, Sep. 2018, doi: 10.3390/molecules23102421.
  • [25] A. Ochoa-Zarzosa et al., “Bioactive Molecules From Native Mexican Avocado Fruit (Persea americana var. drymifolia): A Review”, doi: 10.1007/s11130-021-00887-7/Published.
  • [26] J. E. Pineda-Lozano, A. G. Martínez-Moreno, and C. A. Virgen-Carrillo, “The Effects of Avocado Waste and Its Functional Compounds in Animal Models on Dyslipidemia Parameters,” Frontiers in Nutrition, vol. 8, Feb. 16, 2021. doi: 10.3389/fnut.2021.637183.
  • [27] N. Ahmed et al., “Avocado-derived polyols for use as novel co-surfactants in low energy self-emulsifying microemulsions,” Sci Rep, vol. 10, no. 1, Dec. 2020, doi: 10.1038/s41598-020-62334-y.
  • [28] L. C. B. Züge, H. A. Maieves, J. L. M. Silveira, V. R. da Silva, and A. de P. Scheer, “Use of avocado phospholipids as emulsifier,” LWT - Food Science and Technology, vol. 79, pp. 42–51, Jun. 2017, doi: 10.1016/j.lwt.2017.01.013.
  • [29] O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent*”, J Biol Chem. 1951 Nov;193(1):265-75.
  • [30] H. A. Yurtsever and M. Çiftçioğlu, “The effect of rare earth element doping on the microstructural evolution of sol-gel titania powders,” J Alloys Compd, vol. 695, pp. 1336–1353, Feb. 2017, doi: 10.1016/j.jallcom.2016.10.275.
  • [31] L. Henry, L. N. Henry, U. Yonnah Mtaita, and C. C. Kimaro, “Nutritional efficacy of avocado seeds”, Global Journal of Food Science and Technology, vol. 3, pp. 192-196, August, 2015.
  • [32] Z. S. Tang, N. Bolong, I. Saad, and J. L. Ayog, “The Morphology of Electrospun Titanium Dioxide Nanofibers and Its Influencing Factors” MATEC Web Conf., vol. 47, p. 01020 doi: 10.1051/matecconf/20164701020.
  • [33] S. Mirmohammad Sadeghi, M. Vaezi, A. Kazemzadeh, and R. Jamjah, “Morphology enhancement of TiO2/PVP composite nanofibers based on solution viscosity and processing parameters of electrospinning method,” J Appl Polym Sci, vol. 135, no. 23, Jun. 2018, doi: 10.1002/app.46337.
  • [34] L. E. Oi, M. Y. Choo, H. V. Lee, H. C. Ong, S. B. A. Hamid, and J. C. Juan, “Recent advances of titanium dioxide (TiO2) for green organic synthesis,” RSC Advances, vol. 6, no. 110., pp. 108741-108754, 2016. doi: 10.1039/c6ra22894a.
  • [35] T. Soitong and S. Wongsaenmai, “Characteristic and preparation of TiO2/PVP nanofiber using electrospinning technique,” in Key Engineering Materials, 2019, vol. 798 KEM, pp. 223–228. doi: 10.4028/www.scientific.net/KEM.798.223.
  • [36] K. Qi and J. H. Xin, “Room-temperature synthesis of single-phase anatase TiO2 by aging and its self-cleaning properties,” ACS Appl Mater Interfaces, vol. 2, no. 12, pp. 3479–3485, Dec. 2010, doi: 10.1021/am1005892.
  • [37] H. A. Yurtsever and M. Çiftçioğlu, “The effect of powder preparation method on the artificial photosynthesis activities of neodymium doped titania powders,” Int J Hydrogen Energy, vol. 43, no. 44, pp. 20162–20175, Nov. 2018, doi: 10.1016/j.ijhydene.2018.08.185.
  • [38] S. Huang, L. Zhou, M. C. Li, Q. Wu, Y. Kojima, and D. Zhou, “Preparation and properties of electrospun poly (vinyl pyrrolidone)/cellulose nanocrystal/silver nanoparticle composite fibers,” Materials, vol. 9, no. 7, Jul. 2016, doi: 10.3390/ma9070523.
  • [39] S. Al-Taweel, H. Saud, S. S. Al-Taweel, and H. R. Saud, “New route for synthesis of pure anatase TiO2 nanoparticles via utrasound-assisted sol-gel method,” Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, vol. 8, no. 2, pp. 620–626, 2016, [Online]. Available: www.jocpr.com
  • [40] Y. C. Hung, S. C. Hsieh, S. R. Hou, J. Y. Kung, C. M. Tang, and C. J. Chang, “In vivo evaluation of pvp‐gelatin‐chitosan composite blended with egg‐yolk oil for radiodermatitis,” Applied Sciences, vol. 11, no. 21, Nov. 2021, doi: 10.3390/app112110290.
  • [41] Kamaruddin, D. Edikresnha, I. Sriyanti, M. M. Munir, and Khairurrijal, “Synthesis of Polyvinylpyrrolidone (PVP)-Green Tea Extract Composite Nanostructures using Electrohydrodynamic Spraying Technique,” in IOP Conference Series: Materials Science and Engineering, May 2017, vol. 202, no. 1. doi: 10.1088/1757-899X/202/1/012043.
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Bitlis Eren Üniversitesi Rektörlüğü