Birleştirilmiş kömür gazlaştırma ve metanlaştırma sisteminin parçacık sürü optimizasyon yöntemiyle performans değerlendirmesi

Karbondioksit hidrojenasyonu, alternatif yakıtları çevre dostu bir şekilde üretmenin umut verici bir yöntemidir. Mevcut literatürdeki araştırmacılar temel olarak çeşitli kaynaklardan gelen karbondioksiti ve su elektroliz ünitelerinden gelen hidrojeni kullanan karbondioksit hidrojenasyon sistemlerinin performansını araştırmışlardır. Bu çalışmada, metan ve güç üretmek için kombine bir kömür gazlaştırma ve metanlaştırma ünitesinin performansı araştırılmıştır. Metanasyon ünitesi için karbon dioksit ve hidrojen, kömür gazlaştırma sisteminden sağlanmaktadır. Buradaki karbondioksit ve hidrojen değerlerinin optimizasyonunu sağlamak için parçacık sürü optimizasyonu (PSO) yöntemi uygulandı. Bu nedenle yüksek miktarda enerjiye ihtiyaç duyan su elektroliz ünitesi sistemden verimli şekilde uzaklaştırılmıştır. İncelenen sistemden elde edilen sonuçlar, yılda ~946 kiloton kömür kullanarak yılda ~225 kiloton metan üretmenin mümkün olduğunu göstermiştir. Ayrıca, sonuçlar yıllık ~624.3 kiloton karbondioksit kullanımının mümkün olduğunu ortaya koymuştur. Sistem verimliliği yaklaşık %49 olarak tahmin edilmektedir.

Performance assessment of a combined coal gasification and methanation system with particle swarm optimization method

Carbon dioxide hydrogenation is a promising method of producing alternative fuels in an environmentally friendly way. Researchers in the current literature have mainly investigated the performance of carbon dioxide hydrogenation systems that use carbon dioxide from various sources and hydrogen from water electrolysis units. In the present study, the performance of a combined coal gasification and methanation unit is investigated to produce methane and power. The carbon dioxide and hydrogen for the methanation unit are provided from the coal gasification system. A Particle swarm optimization (PSO) method is applied to optimize the carbon dioxide and hydrogen values here. Therefore, the water electrolysis unit, which needs high amounts of energy is removed from the system, effectively. The results from the studied system showed that it is possible to produce ~225 kilotons of methane annually by using ~946 kilotons of coal per year. In addition, the results revealed that annual carbon dioxide utilization of ~624.3 kilotons is possible. The system efficiency is estimated at around 49%.

___

  • Yılmaz C., Kanoglu M. 2017. Investigation of hydrogen production cost by geothermal energy. International Advanced Researches and Engineering Journal, 1(1): 5-10.
  • Sen O., Yılmaz C. 2020. Thermodynamic performance analysis of geothermal and solar energy assisted power generation and residential cooling system. International Advanced Researches and Engineering Journal, 4(1): 41-47.
  • Schemme S., et al. 2020. H2-based synthetic fuels: A techno-economic comparison of alcohol, ether and hydrocarbon production. International journal of hydrogen energy, 45(8): 5395-5414.
  • Dieterich V. et al. 2020. Power-to-liquid via synthesis of methanol, DME or Fischer–Tropsch-fuels: a review. Energy & Environmental Science, 13(10): 3207-3252.
  • Schemme S., et al. 2018. Promising catalytic synthesis pathways towards higher alcohols as suitable transport fuels based on H2 and CO2. Journal of CO2 utilization, 27: 223-237.
  • Herdem M.S. et al. 2020. Simulation and modeling of a combined biomass gasification-solar photovoltaic hydrogen production system for methanol synthesis via carbon dioxide hydrogenation. Energy Conversion and Management, 219: 113045.
  • Zhang H. et al. 2019. Techno-economic optimization of CO2-to-methanol with solid-oxide electrolyzer. Energies, 12(19): 3742.
  • Kotowicz J., Brzeczek M., Wecel D. 2020. Analysis of the work of a" renewable" methanol production installation based on h2 from electrolysis and co2 from power plants. Energy, 119538.
  • Eveloy V. 2019. Hybridization of solid oxide electrolysis-based power-to-methane with oxyfuel combustion and carbon dioxide utilization for energy storage. Renewable and Sustainable Energy Reviews, 108: 550-571.
  • Momeni M. et al. 2021. A comprehensive analysis of a power-to-gas energy storage unit utilizing captured carbon dioxide as a raw material in a large-scale power plant. Energy Conversion and Management, 227: 113613.
  • Hanggi S. et al. 2019. A review of synthetic fuels for passenger vehicles. Energy Reports, 5: 555-569.
  • Brynolf S. et al. 2018. Electrofuels for the transport sector: A review of production costs. Renewable and Sustainable Energy Reviews, 81: 1887-1905.
  • Herdem M.S. et al. (2014). Thermodynamic modeling and assessment of a combined coal gasification and alkaline water electrolysis system for hydrogen production. International Journal of Hydrogen Energy, 39(7): 3061-3071.
  • Qin Z. et al. 2020. Methanation of coke oven gas over Ni-Ce/γ-Al2O3 catalyst using a tubular heat exchange reactor: Pilot-scale test and process optimization. Energy Conversion and Management, 204: 112302.
  • Zimmermann R.T., Bremer J., Sundmacher K. 2020. Optimal catalyst particle design for flexible fixed-bed CO2 methanation reactors. Chemical Engineering Journal, 387: 123704.
  • Chwola T. et al. 2020. Pilot plant initial results for the methanation process using CO2 from amine scrubbing at the Łaziska power plant in Poland. Fuel, 263: 116804.
  • Liu W., Wang Z., Zeng N., Alsaadi F.E., Liu X. 2021. A PSO-based deep learning approach to classifying patients from emergency departments, International Journal of Machine Learning and Cybernetics 12:1939–1948.
  • Le Chatelier`s Principle. [cited 2021 01 Jan] Available from: https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Equilibria/Le_Chateliers_PrincipleChristofides N., Mingozzi A. and Toth P. 1979. The Vehicle Routing Problem, Chichester, UK: Wiley, 315–338.