Computational Thermal Analysis of Divergent and Convergent Flow Channels for Cooling Plates in PEM Fuel Cells

Computational Thermal Analysis of Divergent and Convergent Flow Channels for Cooling Plates in PEM Fuel Cells

During the operation of polymer electrolyte membrane fuel cells excess heat is generated as a result of electrochemical reactions. This heat raises the temperature of the polymer electrolyte membrane fuel cells, which can damage the membrane. Homogeneity of the temperature through the fuel cell is important in terms of stability and performance. Thermal management is therefore essential and is provided by the cooling channels formed on the bipolar plates or cooling plates. In this paper, a three-dimensional computational analysis of the cooling plate with divergent and convergent flow field designs is carried out. In this context, heat transfer and fluid flow performances of these two different flow fields are considered in terms of temperature uniformity, maximum temperature and pressure drop. Numerical results demonstrated that the more uniform temperature distribution along the fuel cell could be achieved with divergent flow field design. Furthermore, when a divergent design is used, the maximum surface temperature of the cooling plate and the pressure drop between the inlet and outlet of the channel are reduced.

___

  • [1] E. Afshari and S. A. Jazayeri, “Effects of the cell thermal behavior and water phase change on a proton exchange membrane fuel cell performance,” Energy Convers. Manag., vol. 51, no. 4, pp. 655–662, 2010, doi: 10.1016/j.enconman.2009.11.004.
  • [2] S. A. Atyabi and E. Afshari, “A numerical multiphase CFD simulation for PEMFC with parallel sinusoidal flow fields,” J. Therm. Anal. Calorim., vol. 135, no. 3, pp. 1823–1833, 2019, doi: 10.1007/s10973-018-7270-3.
  • [3] Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, “A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research,” Appl. Energy, vol. 88, no. 4, pp. 981–1007, 2011, doi: 10.1016/j.apenergy.2010.09.030.
  • [4] Y. Wang, “Modeling of two-phase transport in the diffusion media of polymer electrolyte fuel cells,” J. Power Sources, vol. 185, no. 1, pp. 261–271, 2008, doi: 10.1016/j.jpowsour.2008.07.007.
  • [5] H. Pourrahmani et al., “A Review on the Long-Term Performance of Proton Exchange Membrane Fuel Cells: From Degradation Modeling to the Effects of Bipolar Plates, Sealings, and Contaminants,” Energies, vol. 15, no. 14, 2022, doi: 10.3390/en15145081.
  • [6] Y. Song et al., “Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell,” Int. J. Hydrogen Energy, vol. 45, no. 54, pp. 29832–29847, 2020, doi: 10.1016/j.ijhydene.2019.07.231.
  • [7] R. A. Antunes, M. C. L. Oliveira, G. Ett, and V. Ett, “Corrosion of metal bipolar plates for PEM fuel cells: A review,” Int. J. Hydrogen Energy, vol. 35, no. 8, pp. 3632–3647, 2010, doi: 10.1016/j.ijhydene.2010.01.059.
  • [8] K. Xiong, W. Wu, S. Wang, and L. Zhang, “Modeling, design, materials and fabrication of bipolar plates for proton exchange membrane fuel cell: A review,” Appl. Energy, vol. 301, no. June, 2021, doi: 10.1016/j.apenergy.2021.117443.
  • [9] Y. Leng, P. Ming, D. Yang, and C. Zhang, “Stainless steel bipolar plates for proton exchange membrane fuel cells: Materials, flow channel design and forming processes,” J. Power Sources, vol. 451, no. October 2019, p. 227783, 2020, doi: 10.1016/j.jpowsour.2020.227783.
  • [10] S. Porstmann, T. Wannemacher, and W. G. Drossel, “A comprehensive comparison of state-of-the-art manufacturing methods for fuel cell bipolar plates including anticipated future industry trends,” J. Manuf. Process., vol. 60, no. October, pp. 366–383, 2020, doi: 10.1016/j.jmapro.2020.10.041.
  • [11] M. M. Barzegari and F. A. Khatir, “Study of thickness distribution and dimensional accuracy of stamped metallic bipolar plates,” Int. J. Hydrogen Energy, vol. 44, no. 59, pp. 31360–31371, 2019, doi: 10.1016/j.ijhydene.2019.09.225.
  • [12] H. Talebi-Ghadikolaee, M. Elyasi, and M. J. Mirnia, “Investigation of failure during rubber pad forming of metallic bipolar plates,” Thin-Walled Struct., vol. 150, no. February, p. 106671, 2020, doi: 10.1016/j.tws.2020.106671.
  • [13] E. Alizadeh, S. M. Rahgoshay, M. Rahimi-Esbo, M. Khorshidian, and S. H. M. Saadat, “A novel cooling flow field design for polymer electrolyte membrane fuel cell stack,” Int. J. Hydrogen Energy, vol. 41, no. 20, pp. 8525–8532, 2016, doi: 10.1016/j.ijhydene.2016.03.187.
  • [14] X. Chen et al., “Numerical study of a MIMO-shaped cooling plate in PEMFC stack for heat transfer enhancement,” Energy Reports, vol. 7, pp. 5804–5814, 2021, doi: 10.1016/j.egyr.2021.09.010.
  • [15] M. Saeedan, M. Ziaei-Rad, and E. Afshari, “Numerical thermal analysis of nanofluid flow through the cooling channels of a polymer electrolyte membrane fuel cell filled with metal foam,” Int. J. Energy Res., vol. 44, no. 7, pp. 5730–5748, 2020, doi: 10.1002/er.5332.
  • [16] S. Asghari, H. Akhgar, and B. F. Imani, “Design of thermal management subsystem for a 5 kW polymer electrolyte membrane fuel cell system,” J. Power Sources, vol. 196, no. 6, pp. 3141–3148, 2011, doi: 10.1016/j.jpowsour.2010.11.077.
  • [17] S. M. Baek, S. H. Yu, J. H. Nam, and C. J. Kim, “A numerical study on uniform cooling of large-scale PEMFCs with different coolant flow field designs,” Appl. Therm. Eng., vol. 31, no. 8–9, pp. 1427–1434, 2011, doi: 10.1016/j.applthermaleng.2011.01.009.
  • [18] S. A. Atyabi, E. Afshari, E. Zohravi, and C. M. Udemu, “Three-dimensional simulation of different flow fields of proton exchange membrane fuel cell using a multi-phase coupled model with cooling channel,” Energy, vol. 234, p. 121247, 2021, doi: 10.1016/j.energy.2021.121247.
  • [19] S. Li and B. Sundén, “Numerical study on thermal performance of non-uniform flow channel designs for cooling plates of PEM fuel cells,” Numer. Heat Transf. Part A Appl., vol. 74, no. 1, pp. 917–930, 2018, doi: 10.1080/10407782.2018.1486642.
  • [20] M. Seyhan, Y. E. Akansu, M. Murat, Y. Korkmaz, and S. O. Akansu, “Performance prediction of PEM fuel cell with wavy serpentine flow channel by using artificial neural network,” Int. J. Hydrogen Energy, vol. 42, no. 40, pp. 25619–25629, 2017, doi: 10.1016/j.ijhydene.2017.04.001.
  • [21] B. Timurkutluk and M. Z. Chowdhury, “Numerical Investigation of Convergent and Divergent Parallel Flow Fields for PEMFCs,” Fuel Cells, vol. 18, no. 4, pp. 441–448, 2018, doi: 10.1002/fuce.201800029.
  • [22] M. Z. Chowdhury and B. Timurkutluk, “Transport phenomena of convergent and divergent serpentine flow fields for PEMFC,” Energy, vol. 161, pp. 104–117, 2018, doi: 10.1016/j.energy.2018.07.143.
  • [23] S. A. Ghadhban, W. H. Alawee, and H. A. Dhahad, “Study effects of bio-inspired flow filed design on Polymer Electrolyte Membrane fuel cell performance,” Case Stud. Therm. Eng., vol. 24, no. May 2020, p. 100841, 2021, doi: 10.1016/j.csite.2021.100841.
  • [24] S. Ravishankar and K. Arul Prakash, “Numerical studies on thermal performance of novel cooling plate designs in polymer electrolyte membrane fuel cell stacks,” Appl. Therm. Eng., vol. 66, no. 1–2, pp. 239–251, 2014, doi: 10.1016/j.applthermaleng.2014.01.068.
  • [25] S. M. Rahgoshay, A. A. Ranjbar, A. Ramiar, and E. Alizadeh, “Thermal investigation of a PEM fuel cell with cooling flow field,” Energy, vol. 134, pp. 61–73, 2017, doi: 10.1016/j.energy.2017.05.151.
  • [26] M. Ghasemi, A. Ramiar, A. A. Ranjbar, and S. M. Rahgoshay, “A numerical study on thermal analysis and cooling flow fields effect on PEMFC performance,” Int. J. Hydrogen Energy, vol. 42, no. 38, pp. 24319–24337, 2017, doi: 10.1016/j.ijhydene.2017.08.036.
  • [27] M. C. Acar, “Channel to rib width ratio effect on thermal performance of cooling plate in polymer electrolyte membrane fuel cell,” Fuel Cells, vol. 22, no. 5, pp. 154–168, 2022, doi: 10.1002/fuce.202200082.
  • [28] D. R. S. Raghuraman, R. Thundil Karuppa Raj, P. K. Nagarajan, and B. V. A. Rao, “Influence of aspect ratio on the thermal performance of rectangular shaped micro channel heat sink using CFD code,” Alexandria Eng. J., vol. 56, no. 1, pp. 43–54, 2017, doi: 10.1016/j.aej.2016.08.033.
  • [29] F. C. Chen, Z. Gao, R. O. Loutfy, and M. Hecht, “Analysis of Optimal Heat Transfer in a PEM Fuel Cell Cooling Plate,” Fuel Cells, vol. 3, no. 4, pp. 181–188, 2003, doi: 10.1002/fuce.200330112.
  • [30] E. Afshari, M. Ziaei-Rad, and M. M. Dehkordi, “Numerical investigation on a novel zigzag-shaped flow channel design for cooling plates of PEM fuel cells,” J. Energy Inst., vol. 90, no. 5, pp. 752–763, 2017, doi: 10.1016/j.joei.2016.07.002.