A Nested Square Shaped Metasurface-Based Broadband Linear Polarization Converter for Ku-Band Applications

A Nested Square Shaped Metasurface-Based Broadband Linear Polarization Converter for Ku-Band Applications

This paper presents a wideband, thin, low-cost, and easy to fabricate linear polarization (LP) converter design utilizing metasurface (MS) for Ku-band (12-18 GHz) applications (also in the 18-19 GHz part of the K-band (18-27 GHz)). The design has a topology on a 1.6 mm thick FR-4 dielectric material with copper MS on the front and an entirely copper slab on the back. The presented design shows a polarization conversion ratio (PCR) of beyond 90% within the 12-19 GHz frequency band and also over 99% in the 12.5-13.1 and 16.32-17.64 GHz frequency ranges. To further give insight into the physical structure of the suggested MS-based polarization converter (PC), both the u – v axes are analyzed, and the existing surface behaviors at resonance frequencies are investigated. We compare the performance outputs with other Ku-band PCs, and the efficiencies of the suggested strategy over current MS-based LP converters are emphasized.

___

  • N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science, vol. 340, no. 6138, pp. 1304-1307, Jun. 2013.
  • Y. T. Jia, Y. Liu, Y. J. Guo, K. Li, and S. X. Gong, “Broadband polarization rotation reflective surfaces and their applications to RCS reduction,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 1, pp. 179-188, Jan. 2016.
  • P. Su, Y. J. Zhao, S. L. Jia, W. W. Shi, and H. L. Wang, “An ultra-wideband and polarization-independent metasurface for RCS reduction,” Scientific Reports, vol. 6, art. no. 20387, Feb. 2016.
  • C. F. Yang, X. W. Zhu, P. F. Liu, W. Hong, H. L. Feng, and Y. H. Shi, “A circularly polarized horn antenna based on an FSS polarization converter,” IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 2, pp. 277-281, Feb. 2020.
  • Q. Zheng, C. J. Guo, G. A. E. Vandenbosch, and J. Ding, “Low-profile circularly polarized array with gain enhancement and RCS reduction using polarization conversion EBG structures,” IEEE Transactions on Antennas and Propagation, vol. 68, no. 3, pp. 2440-2445, Mar. 2020.
  • A. J. Danner, T. Tyc, and U. Leonhardt, “Controlling birefringence in dielectrics,” Nature Photonics, vol. 5, no. 6, pp. 357-359, Jun. 2011.
  • J. B. Pendry, “Negative refraction makes a perfect lens,” Physical Review Letters, vol. 85, no. 18, pp. 3966-3969, Oct. 2000.
  • D. C. Liang, J. Q. Gu, J. G. Han, Y. M. Yang, S. Zhang, and W. L. Zhang, “Robust large dimension terahertz cloaking,” Advanced Materials, vol. 24, no. 7, pp. 916-921, Feb. 2012.
  • N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Physical Review Letters, vol. 100, no. 20, art. no. 207402, May 2008.
  • H. L. Zhu, S. W. Cheung, K. L. Chung, and T. I. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 9, pp. 4615-4623, Sep. 2013.
  • Z. J. Zhang, J. Luo, M. W. Song, and H. L. Yu, “Large-area, broadband and high-efficiency near-infrared linear polarization manipulating metasurface fabricated by orthogonal interference lithography,” Applied Physics Letters, vol. 107, no. 24, art. no. 241904, Dec. 2015.
  • Q. T. Li, F. L. Dong, B. Wang, F. Y. Gan, J. J. Chen, Z. W. Song, L. X. Xu, W. G. Chu, Y. F. Xiao, Q. H. Gong, and Y. Li, “Polarization-independent and high-efficiency dielectric metasurfaces for visible light,” Optics Express, vol. 24, no. 15, pp. 16309-16319, Jul. 2016.
  • Z. H. Fang, H. Chen, D. An, C. R. Luo, and X. P. Zhao, “Manipulation of visible-light polarization with dendritic cell-cluster metasurfaces,” Scientific Reports, vol. 8, art. no. 9696, Jun. 2018.
  • F. Costa and M. Borgese, “Systematic design of transmission-type polarization converters comprising multilayered anisotropic metasurfaces,” Physical Review Applied, vol. 14, no. 3, art. no. 034049, Sep. 2020.
  • B. M. Zhang, C. H. Zhu, R. Zhang, X. F. Yang, Y. Wang, and X.M. Liu, “Dual-band wide-angle reflective circular polarization converter with orthogonal polarization modes,” Sensors, vol. 22, no. 24, art. no. 9728, Dec. 2022.
  • S. M. A. M. H. Abadi and N. Behdad, “Wideband linear-to-circular polarization converters based on miniaturized-element frequency selective surfaces,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 2, pp. 525-534, Feb. 2016.
  • X. F. Yang, T. Qi, Y. H. Zeng, X. M. Liu, G. Lu, and Q. Cai, “Broadband reflective polarization rotator built on single substrate,” Electronics, vol. 10, no. 8, art. no. 916, Apr. 2021.
  • X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultra-wideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 8, pp. 3522-3530, Aug. 2015.
  • T. Q. H. Nguyen, T. K. T. Nguyen, T. Q. M. Nguyen, T. N. Cao, H. L. Phan, N. M. Luong, D. T. Le, X. K. Bui, C. L. Truong, and D. L. Vu, “Simple design of a wideband and wide-angle reflective linear polarization converter based on crescent-shaped metamaterial for Ku-band applications,” Optics Communications, vol. 486, art. no. 126773, May 2021.
  • X. K. Yang, Z. Ding, and Z. P. Zhang, “Broadband linear polarization conversion across complete Ku band based on ultrathin metasurface,” AEU International Journal of Electronics and Communications, vol. 138, art. no. 153884, Aug. 2021.
  • Q. Zheng, C. J. Guo, H. X. Li, and J. Ding, “Broadband radar cross-section reduction using polarization conversion metasurface,” International Journal of Microwave and Wireless Technologies, vol. 10, no. 2, pp. 197-206, Mar. 2018.
  • B. Q. Lin, X. Y. Da, J. L. Wu, W. Li, Y. W. Fang, and Z. H. Zhu, “Ultra-wideband and high-efficiency cross polarization converter based on anisotropic metasurface,” Microwave and Optical Technology Letters, vol. 58, no. 10, pp. 2402-2405, Oct. 2016.