CoMoCrSi ile Kaplanmış Ferritik Paslanmaz Çeliğin Korozyon Davranışı

Ferritik paslanmaz çelikler birçok ortamda korozyona karşı oldukça dayanıklıdır. Bilindiği gibi bu dayanımı artırmanın birkaç farklı yolu vardır. Bunlardan bazıları ısıl işlem, alaşımlandırma, tasarım, inhibitör kullanımı yüzey kaplamalarıdır. Bu çalışmada, ferritik paslanmaz çelik alaşım yüzeyine plazma püskürtme kaplama yöntemi kullanılarak, CoMoCrSi tozu 600 A akım şiddetinde kaplanmıştır. Kaplamasız ve kaplama uygulanan numuneler üçlü elektrot sisteminde korozyon deneylerine tabi tutulmuştur. Tafel eğrilerinden korozyon hızı hesaplanmıştır. Sonuç olarak yapılan kaplamanın ferritik paslanmaz çeliğin korozyon direncini çok iyi artırdığı tespit edilmiştir.

Corrosion Behavior of Ferritic Stainless Steel Coated with CoMoCrSi

Ferritic stainless steels are highly resistant to corrosion in many environments. As is known, there are several different ways to increase this strength. Some of these are heat treatment, alloying, design, use of inhibitors, surface coatings. In this study, CoMoCrSi powder was coated on the ferritic stainless steel alloy surface using the plasma spray coating method at a current intensity of 600 A. The uncoated and coated samples were subjected to corrosion tests in the triple electrode system. The corrosion rate was calculated from the Tafel curves. As a result, it was determined that the coating increased the corrosion resistance of ferritic stainless steel satisfactorily.

___

  • [1] Demiroren H. 2009. Corrosion behavior of ferritic stainless steel alloyed with different amounts of niobium in hydrochloric acid solution. Journal of Applied Electrochemistry, 39: 761-767.
  • [2] Wang Y., Liu J., Kang N., Darut G., Poirier T., Stella J., Liao H., Planche M-P. 2016. Cavitation erosion of plasma-sprayed CoMoCrSi coatings. Tribology International, 102: 429–435
  • [3] Wang Z., Li C., Si X., Liu Y., Qi J., Huang Y., Feng J.,Cao J. 2020. Oxidation behavior of ferritic stainless steel inter connect coated by a simple diffusion bonded cobalt protective layer for solid oxide fuel cells. Corrosion Science, 172: 108739.
  • [4] Kim C., Cha J-H., KimS. H., Jang C., Kim T.K. 2020. Development of aluminide diffusion coatings on ODS ferritic-martensitic steel for corrosion resistance in high temperature supercritical-carbon dioxide environment. Applied Surface Science, 509: 145387.
  • [5] Hsu C.H., Lin C.K., Huang K.H., Ou K.L. 2013.Improvement on hardness and corrosion resistance of ferritic stainless steel via PVD-(Ti,Cr)N coatings. Surface&Coatings Technology, 231: 380–384.
  • [6] You P.F., ZhangX., Yang X.G., Zhang H.L., Yang L.X., Zeng C.L. 2019. Preparation and performances of Ni-Fe/CrNx dual layer coatings for ferritic stainless steel inter connects. Results in Physics, 12: 1598–1605.
  • [7] Bijalwan P., Singh C., Kumar A., Sarkar K., Rani N., Laha T., Banerjee A., Mondal K. 2021. Corrosion behaviour of plasma sprayed Fe based metallic glass Fe73Cr2Si11B11C3 (at%) coatings in 3.5% NaCl solution. Journal of Non-Crystalline Solids, 567: 120913.
  • [8] Qina Y., Zhaob H., Lib C., Lua J., He J. 2020. Effect of heat treatment on the microstructure and corrosion behaviors of reactive plasma sprayed TiCN coatings. Surface & Coatings Technology, 398: 126086.
  • [9] Singha A. A. M. M., Franco P. A., Binoj J. S. 2019. Enhancement of corrosion resistance on plasma spray coated mild steel substrate exposed to marine environment. Materials Today: Proceedings, 15: 84–89.
  • [10] Kumar A., Kumar Nayak S., Sarkar K., Banerjee A., Mondal K., Lah T. 2020. Investigation of nano- and micro-scale structural evolution and resulting corrosion resistance in plasma sprayed Fe-based (Fe-Cr-B-C-P) amorphous coatings. Surface & Coatings Technology, 397: 126058.
  • [11] Özel S. 2019. The effect of coating parameter on properties of plasma sprayed Co based coatings. Tehnicki Vjesnik, 26 (2): 318-322.
  • [12] Demirören H., Aksoy M., Erbil M. 2008. The effect of Nb and heat treatment on the corrosion behavior of ferritic stainless steel in acid environments. Materials Science, 44: 566–572.
  • [13] Gupta M., Musalek R., Tesar T. 2020. Microstructure and failure analysis of suspension plasma sprayed thermal barrier coatings. Surface and Coatings Technology, 382: 125218.
  • [14] Wei Z.Y., Cai H.N. 2020. Comprehensive effects of TGO growth on the stress characteristic and delamination mechanism in lamellar structured thermal barrier coatings. Ceramics International, 46 (2): 2220-2237.
  • [15] Erbil M., 1987. Alternatif akım (A.C.) impedans yöntemi ile korozyon hızı belirlenmesi, Doğa, 3: 100-111.
  • [16] Yao M.X., Wu J.B.C., Yick S., Xie Y., Liu R. 2006. High temperature wear and corrosion resistance of a Laves phase strengthened Co–Mo–Cr–Si alloy. Materials Science and Engineering, A 435–436: 78–83. https://doi.org/10.1016/j.msea.2006.07.054
  • [17] Nascimentoa E.M., Amaral L.M., Sofia A., D'Oliveira C.M. 2017. Characterization and wear of oxides formed on CoMoCrSi alloy coatings. Surface & Coatings Technology, 332: 408–413.
  • [18] Sun L. 2021. Adhesion and electric structure at $Fe_3O_4/FeCr_2O_4$ interface: A first principles study. Journal of Alloys and Compounds, 875: 160065.