3-Metil-4-(3-benzensulfoniloksi-4-metoksibenzilidenamino)-4,5-dihidro-1H1,2,4-triazol-5-on molekülünün DFT(B3LYP/mPW1PW91) ve HF Yöntemleriyle Yapısının İncelenmesi

3-Metil-4-(3-benzensulfoniloksi-4-metoksibenzilidenamino)-4,5-dihidro-1H-1,2,4-triazol-5-on molekülü gazfazında DFT(B3LYP/mPW1PW91)/HF metotları ve 6-311G(d) temel seti kullanılarak optimize edilmiştir.Bileşiğin, kuantum kimyasal ve spektroskopik özellikleri optimize edilmiş yapı kullanılarak elde edilmiştir. AyrıcaHOMO-LUMO enerjileri (moleküler sınır orbital enerjileri) hesaplanmış ve bu enerjiler kullanılarak molekülünelektronik özellikleri (elektron ilgisi, elektronegativitesi, dipol momenti, kimyasal sertlik ve kimyasal yumuşaklıkvb.), mulliken atomik yükler populasyon analizi ve termodinamik parametreleri (gibbs serbest enerjileri, entalpive entropi) hesaplanmıştır.

Investigation of Structure of 3-Methyl-4-(3-benzenesulfonyloxy-4- methoxybenzylideneamino)-4,5-dihydro-1H-1,2,4-triazol-5-one by DFT (B3LYP/mPW1PW91) and HF Methods

3-Methyl-4-(3-benzenesulfonyloxy-4-methoxybenzylideneamino)-4,5-dihydro-1H-1,2,4-triazole-5-one molecule is optimized by using DFT (B3LYP/mPW1PW91)/HF levels in the gas phase and 6 311G(d) the basic set. The quantum chemical and spectroscopic properties of the compound were obtained by the optimized structure. In addition, HOMO-LUMO energies (the molecular frontier orbital) are calculated by using these energies and the electronic properties of the molecule (electron affinity, electronegativity, dipole moment, chemical hardness and chemical softness etc.), mulliken atomic charges population analysis and thermodynamic parameters (gibbs free energies, enthalpy and entropy) were calculated.

___

  • [1] Azzouni S., Abdelli A., Gaucher A., Youssef Arfaoui Y., Efrit M.L., Prim D. 2018. From imidates to vinyl-1,2,4-triazoles: Synthesis, mechanistic aspects and first issues of their reactivity, Tetrahedron, 74: 6972-6978.
  • [2] Akin S., Ayaloglu H., Gultekin E., Colak A., Bekircan O., Yildirim Akatin M. 2019. Synthesis of 1,2,4-triazole-5-on derivatives and determination of carbonic anhydrase II isoenzyme inhibition effects, Bioorganic Chemistry, 83: 170-179.
  • [3] Kucukguzel I., Kucukquzel S.G., Rollas S., Otuk-Sanis G., Ozdemir O. Bayrak I., Altug T., Stables J.P. 2004. Synthesis of some 3-(arylalkylthio)-4-alkyl/aryl-5-(4-aminophenyl)-4H-1,2,4- triazole derivatives and their anticonvulsant activity. II Farmaco, 59 (11): 893-901.
  • [4] Ezabadi I.R., Camoutsis C., Zoumpoulakis P., Geronikaki A., Sokovic M., Glamocilija J., Ciric A. 2008. Sulfonamide-1,2,4-triazole derivatives as antifungal and antibacterial agents: synthesis, biological evaluation, lipophilicity and conformational studies. Bioorganic & Medicinal Chemistry, 16 (3): 1150-1161.
  • [5] Xu J., Cao Y., Zhang J., Yu S., Zou Y., Chai X., Wu Q., Zhang D., Jiang Y., Sun Q. 2011. Design, synthesis and antifungal activities of novel 1,2,4-triazole derivatives. European Journal of Medicinal Chemistry, 46 (7): 3142-3148.
  • [6] Papadopoulou M.V., William D. Bloomer W.D., Rosenzweig H.S.,Kaiser M. 2017. The antitrypanosomal and antitubercular activity of some nitro(triazole/imidazole)-based aromatic amines. European Journal of Medicinal Chemistry, 138: 1106-1113.
  • [7] Li B.L., Li B., Zhang R.L., Zhao J.J., Wang X.F., Liu Y.M., Shi Y.P., Liu J.B., Chen B.Q.. 2016. Synthesis and antiproliferative evaluation of novel 1,2,4-triazole derivatives incorporating benzisoselenazolone scaffold. Bioorganic & Medicinal Chemistry Letters, 26 (4): 1279-1281.
  • [8] Zhu H.B., Sun Z.Y. 2018. Aqueous detection of antibiotics with a Cd(II)-based metal-organic framework constructed by a tetra(1,2,4-triazole)-functionalized-bis(triphenylamine) ligand. Inorganic Chemistry Communications, 96: 202-205.
  • [9] Chu X.M., Wang C., Wang W.L., Liang L.L., Liu W., Gong K.K., Sun K.L. 2019. Triazole derivatives and their antiplasmodial and antimalarial activities. European Journal of Medicinal Chemistry, 166: 206-223.
  • [10] Avanzo R.E., Anesini C., Fascio M.L., Errea M.I., D’Accorso N.B. 2012. 1,2,4-Triazole D-ribose derivatives: Design, synthesis and antitumoral evaluation. European Journal of Medicinal Chemistry, 47: 104-110.
  • [11] Bazzar M., Ghaemy M., Alizadeh R. 2013. Synthesis and characterization of new fluorescent polyimides bearing 1,2,4-triazole and 1,2-diaryl quinoxaline: Study properties and application to the extraction/elimination of metallic ions from aqueous media. Reactive and Functional Polymers, 73 (3): 492-498.
  • [12] Liu W.Y., Xie Y.S., Zhao B.X., Lian S., Lv H.S., Gong Z.L., Shin D.S. 2010. The synthesis, Xray crystal structure and optical properties of novel 1-ferrocenyl-2-(3-phenyl-1H-1,2,4-triazol-5- ylthio)ethanone derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 76 (5): 531-536.
  • [13] Jin R.Y., Zeng C.Y., Liang X.H., Sun X.H., Liu Y.F., Wang Y.Y., Zhou S. 2018. Design, synthesis, biological activities and DFT calculation of novel 1,2,4-triazole Schiff base derivatives. Bioorganic Chemistry, 80: 253-260.
  • [14] Süleymanoğlu N., Ustabaş R., Direkel Ş., Bingöl Alpaslan Y., Ünver Y. 2017. 1,2,4-triazole derivative with Schiff base; thiol-thione tautomerism, DFT study and antileishmanial activity. Journal of Molecular Structure, 1150: 82-87.
  • [15] Dennington R., Keith T., Millam J. 2009. GAUSSVIEW, Version 5 Semichem Inc., Shawnee Mission, KS.
  • [16] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr. J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C.,. Iyengar S.S, Tomasi J., Cossi M., Rega N., Millam N.J., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. 2009. Gaussian 09, Gaussian, Inc., Wallingford CT.
  • [17] Lee C., Yang W., Parr R.G. 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, 37: 785-789.
  • [18] Becke A.D. 1988. Density-functional exchange-energy approximation with correctasymptotic behavior”, Physical review A: General physics, 38 (6): 3098-3100.
  • [19] Becke A.D. 1993. Density‐functional thermochemistry. III. The role of exact Exchange, The Journal of Chemical Physics, 98: 372-377.
  • [20] Perdew J.P. 1986. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Physical Review B, 33, 8822.
  • [21] Perdew J.P., Wang Y. 1992. Accurate and simple analytic representation of the electron-gas correlation energy, Physical Review B, 45: 13244.
  • [22] Sudha N., Abinaya B., Arun Kumar R., Mathammal R. 2018. Synthesis, Structural, Spectral, Optical and Mechanical Study of Benzimidazolium Phthalate crystals for NLO Applications, Journal of Lasers Optics & Photonics, 5 (2): 1-6.
  • [23] Mulliken R.S. 1955. Electronic Population Analysis on LCAO–MO Molecular Wave Functions, The Journal of Chemical Physics, 23: 1833-1840.
  • [24] Yokuş Ö. A., 2012. Bazı yeni 1,2,4-triazol türevlerinin sentezi ve biyolojik aktivitelerinin incelenmesi. Doktora Tezi, Kafkas Üniversitesi, Fen Bilimleri Enstitüsü, Kars.
  • [25] Fleming I. 1991. Frontier Orbitals and Organic Chemical Reactions, 249.
  • [26] Cramer C.J. 2004. Essentials of Computational Chemistry: Theories and Models Journal Computational Chemistry, 596.
  • [27] Levine I.N. 2000. Many‐Electron Atoms. Quantum chemistry. Prentice‐ Hall Inc, New Jersey, 739s.