In vitro androgenesis in pepper (Capsicum annuum L.) and theaffecting factors on success: II. Carbohydrate source andantioxidants

In vitro androgenesis in pepper (Capsicum annuum L.) and theaffecting factors on success: II. Carbohydrate source andantioxidants

Microspore cells develop into male gametophytes, which are released as pollen. Undercertain stress conditions, the developmental pathway of microspores can betransformed into an embryo instead of pollen with haploid technology. In thisexperiment, 2 pepper breeding lines (G-1 and G-2) and 4 nutrient media formed withMurashige & Skoog (1962-MS) + 30 g L-1 sucrose or maltose and with or withoutvitamins as antioxidants. 0.05 mg L-1 biotin (vitamin B7) and 0.5 mg L-1 ascorbic acid(vitamin C) were studied as antioxidants. The anthers were pretreated for 2 days at 35ºC in dark, then they were incubated in a climate chamber at 25 ºC and 16/8 hoursphotoperiodic conditions. The highest embryos rate, and development of embryosinto the plantlet has been obtained from the medium containing maltose, andantioxidants. Although there was no significant differences between genotypes inmedium- I (MS + sucrose), medium-II (MS + sucrose and antioxidants) and medium-III(MS + maltose) in terms of embryogenic response, a significant difference wasdetermined between genotypes in medium-IV (MS + maltose and antioxidants). Thenumber of embryos obtained from the G-1 in medium-IV has increased 2.5, 6.4, and4.5 times, compared to the medium-I, medium-II, and medium-III respectively

___

  • Açıkgöz, N., İlker, E., & Gökçöl, A. (2004). Biyolojik araştırmaların bilgisayarda değerlendirilmeleri, Ege Üniversitesi Tohum Teknolojisi Uygulama ve Araştırma Merkezi Yayınları No: 2, Ege Üniversitesi Ziraat Fakültesi ofset atölyesi (in Turkish).
  • Al-Khayri J. M. (2001). Optimization of biotin and thiamine requirements for somatic embryogenesis of date palm (Phoenix dactylifera L.). In vitro Cellular &Developmental Biology Plant, 37(4), 453-456. http://doi.org/10.1079/IVP2001200
  • Bat, H., Shidfar, M., Çömlekçioğlu, N., & Ellialtıoğlu Ş. Ş. (2020). In vitro androgenesis in pepper and the affecting factors on success: I. Carbon source and concentrations. Biotech Studies, 29(2), 62-68. http://doi.org/10.38042/biost.2020.29.02.02
  • Becker M. G., Chan A., Mao X., Girard I. J., Lee S., Elhiti M., Stasolla, C., & Belmonte, M. F. (2014). Vitamin C deficiency improves somatic embryo development through distinct gene regulatory networks in Arabidopsis. J Exp. Bot., 65, 5903–5918. https://doi.org/10.1093/jxb/eru330
  • Cengiz, R. & Korkut, Z. K. (2020). Development of doubled haploid maize lines by using in vivo haploid technique. Biotech Studies, 29(1), 1-7. http://doi.org/10.38042/biost.2020.29.01.01
  • Cheng, Y., Jiao, Y., Miao, R., Tian, R., Liang Y., & Qiao, N. (2020). Exploring differentially expressed genes of microspore embryogenesis under heat stress in sweet pepper. African Journal of Biotechnology, 19(9), 661-674. https://doi.org/10.5897/AJB2020.17194
  • Çömlekçioğlu N., & Ellialtıoğlu, Ş. Ş. (2018). Review on the research carried out on in vitro androgenesis of peppers (Capsicum annuum L.) in Turkey. Research Journal of Biotechnology, 13(6), 75-84.
  • Demirkaya, B. & Comlekcioglu, N. (2021). Effects of biotin and ascorbic acid applications on haploid embryo induction in semisolid and double layer nutrient media in pepper (Capsicum annuum L.) anther culture. Int. J. Agric. Environ. Food Sci., 5(2), 191-196. https://doi.org/10.31015/jaefs.2021.2.8
  • El-Sharabasy, S. F., Bosila, H. A., Abdel-Aal, W. B., Mansour, B. M., & Bana A. A. (2019). Effect of vitamins (pyridoxine and nicotinic acid), Thiamine-HCl and Myo-inositol at different concentrations on free amino acids and indoles content of embryogenic callus of in vitro date palm (Sakkoty and Bartamuda cultivars) materials. Research Proceedings, 11, 244-252. https://doi.org/10.21741/9781644900178-20
  • Geboloğlu, N., Doksöz Boncukçu, S., Durna, P. & Bayram, M. (2017). Patlıcanda Şeker, Bal ve Büyüme Düzenleyicilerin Anter Kültüründe Embriyoid Oluşumuna Etkisi. Akademik Ziraat Dergisi 6, 275-280.
  • George, L., & Narayanaswamy, S. (1973). Haploid Capsicum through experimental androgenesis. Protoplasma, 78 (4), 467-470. https://doi.org/10.1007/BF01275781
  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12): 909– 930. https://doi.org/10.1016/j.plaphy.2010.08.016
  • Habibi, N., Suthar, P. K., & Purohit, S. D. (2009). Role of PGRs and inhibitors in induction and control of somatic embryogenesis in Themeda quadrivalvis. Indian Journal of Experimental Biology, 47 (3), 198–203. PMID: 19405386
  • Hoseini, M., Ghadimzadeh, M., Ahmadi, B. A. J., & Silva, T. (2014). Effects of ascorbic acid, -tocopherol, and glutathione on microspore embryogenesis in Brassica napus L. In Vitro Cellular & Developmental Biology–Plant, 50(1), 26–35. https://doi.org/10.1007/s11627-013- 9579-8
  • Irıkova, T., Grozeva, S., Popov, P., Rodeva, V., & Todorovska, E. (2011). In vitro response of pepper anther culture (Capsicum annuum L.) depending on genotype, nutrient medium and duration of cultivation. Biotechnology and Biotechnological Equipment, 25(4), 2604-2609. https://doi.org/10.5504/BBEQ.2011.0090
  • Kuo, J. S., Wang, Z. Z., Chien, N. F., Ku, S. J., Kung, M. L., & Hsu, H. C. (1973). Investigation on the anther culture in vitro of Nicotiana tabacum L. and Capsicum annuum L. Acta Botanica Sinica, 15(1), 43–47.
  • Last, D. I., & Brettell, R. I. S. (1990). Embryo yield in wheat anther culture is influenced by the choice of sugar in the culture medium. Plant CelI Reports, 9, 14-16. https://doi.org/10.1007/BF00232126
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15, 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Navarro‐Alvarez, W., Baenziger, P. S., Eskridge K. M., Shelton, D. R., Gustafson, V. D., & Hugo, M. (2006). Effect of sugars in wheat anther culture media. Plant Breeding, 112(1), 53-62. https://doi.org/10.1111/j.1439- 0523.1994.tb01276.x
  • Ozsan, T., & Onus, A. N. (2017). In vitro pepper (Capsicum annuum L.) anther culture: Can be affected via vitamins B?. Biotechnology Journal International, 20(1), 1-13. https://doi.org/10.9734/BJI/2017/37102
  • Perez-Perez, Y., El-Tantawy, A. A., Solis, M. T., Risueno, M. C., & Testillano, P. S. (2019). Stress-induced microspore embryogenesis requires endogenous auxin synthesis and polar transport in barley. Front. Plant Sci., 10:1200. https://doi.org/10.3389/fpls.2019.01200
  • Rodriguez-Serrano, M., Barany, I., Prem, D., Coronado, M. J., Risueno, M. C., & Testilano, P. S. (2012). NO, ROS, and cell death associated with caspase-like activity increase in stress induced microspore embryogenesis of barley. J. of Experimental Botany, 63(5): 2007-24. https://doi.org/10.1093/jxb/err400
  • Roje, S. (2007). Vitamin B biosynthesis in plants. Phytochemistry, 68, 1904-1921. https://doi.org/10.1016/j.phytocochem.2007.03.038
  • Sanchez, M. A., Coronado, Y. M., & Coronado, A. C. M. (2020). Androgenic studies in the production of haploids and doubled haploids in Capsicum spp. Revista Facultad Nacional de Agronomia Medellin, 73, 9047-9056. https://doi.org/10.15446/rfnam.v73n1.76044
  • Segui-Simarro, J. M., & Nuez, F. (2008). How microspores transform into haploid embryos: changes associated with embryogenesis induction and microspore derived embryogenesis. Physiologia Plantarum, 134(1), 1–12. https://doi.org/10.1111/j.1399-3054.2008.01113.x.
  • Shariatpanahi, M. E., Bal, U., Heberle-Bors E., & Touraev, A. (2006). Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiologia Plantarum, 127(4), 519–534. https://doi.org/10.1111/j.1399-3054.2006.00675.x
  • Testillano, P. S. (2018). Stress-induced microspore embryogenesis in crop plants: Cell totipotency acquisition and embryo development. In: Cánovas F., Lüttge U., Leuschner C., Risueño MC. (eds) Progress in Botany Vol. 81. Progress in Botany, vol 81. Springer, Cham. https://doi.org/10.1007/124_2018_24
  • Taskin, H., Buyukalaca, S., Keles, D., & Ekbic, E. (2011). Induction of microspore-derived embryos by anther culture in selected pepper genotypes. African Journal of Biotechnology. https://doi.org/10.5897/AJB11.2023
  • Testillano, P. S. (2019). Microspore embryogenesis: targeting the determinant factors of stress-induced cell reprogramming for crop improvement. Journal of Experimental Botany, 70(11), 2965–2978. https://doi.org/10.1093/jxb/ery464.
  • Trejo-Tapia, G., Amaya, U. M., Morales, G. S., Sanchez, A. D. J., Bonfil, B. M., Monroy, M. R., & Jimenez-Aparicio, A. (2002). The effects of cold-pretreatment, auxins and carbon source on anther culture of rice. Plant Cell, Tissue and Organ Culture, 71, 41–46. https://doi.org/10.1023/A:1016558025840
  • Wang, Y. Y., Sun, C. S., Wang, C. C., & Chien, N. F. (1973). The induction of the pollen plantlets of triticale and Capsicum annuum L. from anther culture. Science Sinica, 16, 147-151.
  • Varnier A. L., Jacquard C., & Clement C. (2009) Programmed cell death and microspore embryogenesis. In: Touraev A., Forster B.P., Jain S.M. (eds) Advances in Haploid Production in higher plants. Springer, Dordrecht. 147– 154. https://doi.org/10.1007/978-1-4020-8854- 4_11
  • Zeng, A., Yan, J., Song, L., Gao, B., & Li, J. (2015). Effects of ascorbic acid and embryogenic microspore selection on embryogenesis in white cabbage (Brassica oleracea L. var. capitata). The Journal of Horticultural Science and Biotechnology, 90(6), 607-612. https://doi.org/10.1080/14620316.2015.11668722
  • Zur, I., Dubas, E., Golemiec, E., Szechyńska-Hebda, M., Golebiowska, G., & Wedzony, M. (2009). Stress-related variation in anti-oxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of Triticale (× Triticosecale Wittm.). Plant Cell Rep., 28, 1279-1287. https://doi.org/10.1007/s00299-009-0730-2
Biotech Studies-Cover
  • ISSN: 2687-3761
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1992
  • Yayıncı: TAGEM Journals
Sayıdaki Diğer Makaleler

Effect of different concentration of exogenous proline applications on cadmium accumulation and mineral nutrition (K, Mg, Na and Ca) of common wheat (Triticum aestivum)

Tuncer Okan GENÇ

Genome-wide analysis of Fragaria vesca three-amino-acid-loop-extension (TALE) genes

Gizem KABAK, Seray ŞEHSUVAR, Sıla TURGUT, Şeyma GÖKDEMİR

Genome-wide analysis of Fragaria vesca Three-Amino-Acid Loop-Extension (TALE) gene

Şeyma GÖKDEMİR, Gizem KABAK, Seray ŞAHSUVAR, Sıla TURGUT

Gizem KABAK, Seray ŞEHSUVAR, Sıla TURGUT, Şeyma GÖKDEMİR

Ergün DOĞANGÜZEL, Fatma Nur ALTINDAĞ, Merve Arefe YİĞİT, Şeküre Şebnem ELLİALTIOĞLU, Nuray ÇÖMLEKÇİOĞLU

Developmental responses of perennial ryegrass, red fescue, andKentucky bluegrass to In vitro chitosan treatments

Arda ACEMİ, Durhan TIRLI, Serdar YILDIZ, Fazıl ÖZEN

In vitro androgenesis in pepper (Capsicum annuum L.) and theaffecting factors on success: II. Carbohydrate source andantioxidants

Nuray ÇÖMLEKÇİOĞLU, Şeküre Şebnem ELLİALTIOĞLU, Merve Arefe YİĞİT, Ergün DOĞANGÜZEL, Fatma Nur ALTINDAĞ

Effect of different concentration of exogenous prolineapplications on cadmium accumulation and mineral nutrition (K,Mg, Na, and Ca) of common wheat (Triticum aestivum)

Tuncer Okan GENÇ

Characterization of intracellular β-galactosidase from Bacillussubtilis 4NK and Bacillus paralicheniformis 5NK isolated from ahot water spring and effects of various inhibitors on enzymeactivity

Fatma MATPAN BEKLER, Kemal GÜVEN, Şaban TUNÇ

Tuncer Okan GENÇ