Genome-wide analysis of Fragaria vesca Three-Amino-Acid Loop-Extension (TALE) gene

Genome-wide analysis of Fragaria vesca Three-Amino-Acid Loop-Extension (TALE) gene

The present study is aimed to identify and characterize the three-amino-acid-loop extension (TALE) genes in Fragaria vesca as bioinformatics. TALE superclasshomeoproteins have important roles in regulating certain signal pathways in the plantsystem. However, there is no knowledge about the role of TALE genes in Fragariavesca. According to this study, a total of 18 candidate FvescaTale genes wereidentified. Identification of motifs, exon and intron analysis, genome mapping,localization in the cell, three-dimensional modeling, and ontology analysis were madeaccording to these genes. This bioinformatic analysis revealed that FvescaTale genesmight play an important role in stress response for Fragaria vesca cultivars andsuggests that these genes could be used as functional markers for in silico analysis forfuture studies.

___

  • Akam, M. (1993). Evolutionary conservation of developmental mechanisms: edited by Allan Spradling, Wiley-Liss, 1993. $98.00 (xii+ 219 pages) ISBN 0 471 58843 1.
  • Ariel, F. D., Manavella, P. A., Dezar, C. A., & Chan, R. L. (2007). The true story of the HD-Zip family. Trends in Plant Science, 12(9), 419–426. https://doi.org/10.1016/j.tplants.2007.08.003
  • Burglin, T. R. (1997). Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res. 25:4173–4180. https://doi.org/10.1093/nar/25.21.4173
  • Chen, H. (2003). Interacting Transcription Factors from the Three-Amino Acid Loop Extension Superclass Regulate Tuber Formation. Plant Physiology, 132(3), 1391–1404. https://doi.org/10.1104/pp.103.022434
  • Darrow, G. M. (1966). The strawberry. History, breeding and physiology. The strawberry. History, breeding and physiology. https://doi.org/10.1104/pp.103.022434
  • Hamant, O., & Pautot, V. (2010). Plant development: a TALE story. Comptes rendus biologies, 333(4), 371-381. https://doi.org/10.1016/j.crvi.2010.01.015
  • Hay, A., & Tsiantis, M. (2010). KNOX genes: versatile regulators of plant development and diversity. Development, 137(19), 3153–3165. https://doi.org/10.1242/dev.030049
  • Hirano, K., Kondo, M., Aya, K., Miyao, A., Sato, Y., Antonio, B. A., Namiki, N., Nagamura, Y., & Matsuoka, M. (2013). Identification of transcription factors involved in rice secondary cell wall formation. Plant and Cell Physiology, 54(11), 1791-1802. https://doi.org/10.1093/pcp/pct122
  • Li, Y., Pi, M., Gao, Q., Liu, Z., & Kang, C. (2019). Updated annotation of the wild strawberry Fragaria vesca V4 genome. Horticulture Research, 6(1). https://doi.org/10.1038/s41438-019-0142-6
  • Liu, Y., You, S., Taylor-Teeples, M., Li, W. L., Schuetz, M., Brady, S. M., & Douglas, C. J. (2014). BEL1-LIKE HOMEODOMAIN6 and KNOTTED ARABIDOPSIS THALIANA7 interact and regulate secondary cell wall formation via repression of REVOLUTA. The Plant Cell, 26(12), 4843-4861. https://doi.org/10.1105/tpc.114.128322
  • Ma, Q., Wang, N., Hao, P., Sun, H., Wang, C., Ma, L., Wang, H., Zhang, X., Wei, H., & Yu, S. (2019). Genome-wide identification and characterization of TALE superfamily genes in cotton reveals their functions in regulating secondary cell wall biosynthesis. BMC plant biology, 19(1), 1-20. https://doi.org/10.1186/s12870-019-2026-1
  • Morino, Y., Hashimoto, N., & Wada, H. (2017). Expansion of TALE homeobox genes and the evolution of spiralian development. Nature ecology & evolution, 1(12), 1942- 1949. https://doi.org/10.1038/s41559-017-0351-z
  • Reiser, L., Modrusan, Z., Margossian, L., Samach, A., Ohad, N., Haughn, G. W., & Fischer, R. L. (1995). The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell, 83(5), 735-742. https://doi.org/10.1016/0092-8674(95)90186-8
  • Rutjens, B., Bao, D., Van Eck‐Stouten, E., Brand, M., Smeekens, S., & Proveniers, M. (2009). Shoot apical meristem function in Arabidopsis requires the combined activities of three BEL1‐like homeodomain proteins. The Plant Journal, 58(4), 641-654. https://doi.org/10.1111/j.1365- 313X.2009.03809.x
  • Shulaev, V., Sargent, D. J., Crowhurst, R. N., Mockler, T. C., Folkerts, O., Delcher, A. L., Jaiswal, P., Mockaitis, K., Liston, A., Mane, S. P., Burns, P., Davis, T. M., Slovin, J. P., Bassil, N., Hellens, R. P., Evans, C., Harkins, T., Kodira, C., Desany, B., Crasta, O. R., … & Folta, K. M. (2011). The Genome of Woodland Strawberry (Fragaria Vesca). Nature Genetics, 43(2), 109-16. DOI.org (Crossref), https://doi.org/10.1038/ng.740