Assessment of some bread wheat (Triticum aestivum L.) genotypes for drought tolerance using SSR and ISSR markers

Assessment of some bread wheat (Triticum aestivum L.) genotypes for drought tolerance using SSR and ISSR markers

As a result of the rapid increase in the world population, the need for wheat, which is one of the main nutrition in the human diet, is also rapidly increases. However, due to yield losses caused by abiotic stress factors such as drought, wheat production is not sufficient. Therefore, genetic characterization studies performed on wheat genotypes in terms of drought tolerance are important. In this study, genetic characterization of wheat genotypes regardingdrought tolerance was carried out by using molecular markers associated with drought-tolerance genes. For this purpose, 14 polymorphic markers were used to be able to distinguish between the control groups. Genetic characterization of 27 bread wheat genotypes by using eight ISSR markers revealed a polymorphism rate of 75.8%, and the mean PIC was calculated as 0.55. Based on the results of the genetic characterization performed with six SSR markers, the mean PIC value was 0.77, the mean He was 0.79, and the mean allele number was 6.7. In this study, the characterization of drought-tolerant and sensitive genotypes was carried out, and the potentials of genotypes for breeding studies were revealed. This study also indicates that used SSRs and ISSRs markers are useful in marker-assisted breeding about drought tolerance.

___

  • Ahmad, M. Q., Hassan, M. Qayyum, A., Saleem, M. A., Malik, W., Noor E., & Ul-Allah, S. (2019). Characterization of synthetic wheat germplasm using morphological and molecular markers. International Journal of Agriculture and Biology, 22, 131-138. https://doi.org/10.17957/IJAB/15.1042
  • Al-Tamimi, A.J.T., & Al-Janabi, A. S. (2019). Genetic diversity among bread wheat genotypes using RAPD and SSR markers. Sabrao Journal of Breeding and Genetics, 51(3).
  • Anderson, G. A., Churchill, G. A., Autrique, J. E., Tanksley, S. D., & Sorrells, M. E. (1993). Optimizing parental selection for genetic linkage maps. Genome, 36(1), 181-186. https://doi.org/10.1139/g93-024
  • Ates-Sonmezoglu, Ö. A., Bozmaz, B., Yildirim, A., Kandemir, N., & Aydin, N. (2012). Genetic characterization of Turkish bread wheat landraces based on microsatellite markers and morphological characters. Turkish Journal of Biology, 36(5), 589-597. https://doi.org/10.3906/biy-1202-43
  • Ates-Sonmezoglu, Ö., & Terzi, B. (2018). Characterization of some bread wheat genotypes using molecular markers for drought tolerance. Physiology and Molecular Biology of Plants, 24(1), 159-166. https://doi.org/10.1007/s12298-017-0492-1
  • Barakat, M., Al-Doss, A. A., Moustafa, K., & Ibrahim, E. (2010). Morphological and molecular characterization of Saudi wheat genotypes under drought stress. Journal of Food, Agriculture & Environment, 8(1), 220-228.
  • Ben, H. L. (1998). Statistical genomics: linkage, mapping and QTL analysis. In: Statistical Genomics. CRC Press.
  • Dodig, D., Zorić, M., Kobiljski, B., Šurlan-Momirović, G., & Quarrie, S. A. (2010). Assessing drought tolerance and regional patterns of genetic diversity among spring and winter bread wheat using simple sequence repeats and phenotypic data. Crop and Pasture Science, 61(10), 812-824. https://doi.org/10.1071/CP10001
  • Doyle, J. J. (1990). A rapid total DNA preparation procedure for fresh plant tissue. Focus, 12, 13-15.
  • Eid, M. (2018). Validation of SSR molecular markers linked to drought tolerant in some wheat cultivars. Journal of Plant Breeding and Genetics, 6(3), 95-109. https://doi.org/10.33687/pbg.006.03.2739
  • FAOSTAT, (2021). Food and Agriculture Organization of the United Nations Statistics Division. http://www.fao.org/worldfoodsituation/csdb/en World Food Situation. (Accessed 12 July 2021) Gupta, P. K., Balyan, H. S., & Gahlaut, V. (2017). QTL analysis for drought tolerance in wheat: present status and future possibilities. Agronomy, 7(1), 5. https://doi.org/10.3390/agronomy7010005
  • Hai, L., Wagner, C., & Friedt, W. (2007). Quantitative structure analysis of genetic diversity among spring bread wheats (Triticum aestivum L.) from different geographical regions. Genetica, 130(3), 213-225. https://doi.org/10.1007/s10709-006-9008-6
  • Hao, C. Y., Zhang, X. Y., Wang, L. F., Dong, Y. S., Shang, X. W., & Jia, J. Z. (2006). Genetic diversity and core collection evaluations in common wheat germplasm from the Northwestern Spring Wheat Region in China. Molecular Breeding, 17(1), 69-77. https://doi.org/10.1007/s11032-005-2453-6
  • Hassan, R., Waheed, M. Q., Shokat, S., Rehman-Arif, M. A., Tariq, R., Arif, M., & Arif, A. (2020). Estimation of genomic diversity using sequence related amplified polymorphism (SRAP) markers in a mini core collection of wheat germplasm from Pakistan. Cereal Research Communications, 48(1), 33-40. https://doi.org/10.1007/s42976-019-00006-y
  • Iqbal, J. (2019). Morphological, physiological and molecular markers for the adaptation of wheat in drought condition. Asian Journal of Biotechnology and Genetic Engineering, 2(1), 1-13. https://doi.org/10.9734/AJBGE/2019/46253
  • Isshiki, S., Iwata, N., & Khan, M. M. R. (2008). ISSR variations in eggplant (Solanum melongena L.) and related Solanum species. Scientia Horticulturae, 117(3), 186-190. https://doi.org/10.1016/j.scienta.2008.04.003
  • Jaccard, P. (1908). Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat., 44, 223-270.
  • Khaled, A. G. A., Motawea, M. H., & Said, A. A. (2015). Identification of ISSR and RAPD markers linked to yield traits in bread wheat under normal and drought conditions. Journal of Genetic Engineering and Biotechnology, 13(2), 243-250. https://doi.org/10.1016/j.jgeb.2015.05.001
  • Kumar, S., Kumari, J., Bansal, R., Kuri, B. R., Upadhyay, D., Srivastava, A., Rana, B., Yadav, M. K., Sengar, R. S., Singh, A. K., & Singh, R. (2018). Multi-environmental evaluation of wheat genotypes for drought tolerance. Indian J. Genet, 78(1), 26-35. https://doi.org/10.5958/0975-6906.2018.00004.4
  • Kyrienko, A. V., Rozhkov, R. V., Parii, M. F., & Symonenko, Y. V. (2018). Genotyping of Triticum ssp. hexaploid species samples with ISSR-markers. Cytology and Genetics, 52(4), 276-282. https://doi.org/10.3103/S0095452718040047
  • Liu, X. C., Wu, J. L. (1998). SSR heterogenic patterns of parents for marking and predicting heterosis in rice breeding. Molecular Breeding, 4, 263–268. https://doi.org/10.1023/A:1009645908957
  • Mason, R. E., Mondal, S., Beecher, F. W., Pacheco, A., Jampala, B., Ibrahim, A. M., & Hays, D. B. (2010). QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress. Euphytica, 174(3), 423-436. https://doi.org/10.1007/s10681-010-0151-x
  • Mkhabela, S. S., Shimelis, H., & Mashilo, J. (2020). Genetic differentiation of selected drought and heat tolerant wheat genotypes using simple sequence repeat markers and agronomic traits. South African Journal of Plant and Soil, 37(3), 211-219. https://doi.org/10.1080/02571862.2020.1718787
  • Mickelbart, M. V., Hasegawa, P. M., & Bailey-Serres, J. (2015). Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nature Reviews Genetics, 16(4), 237-251. https://doi.org/10.1038/nrg3901
  • Mohammadi, R., & Abdulahi, A. (2017). Evaluation of durum wheat genotypes based on drought tolerance indices under different levels of drought stress. Journal of Agricultural Sciences, Belgrade, 62(1), 1-14. https://doi.org/10.2298/JAS1701001M
  • Prasad, B., Babar, M. A., Xu, X. Y., Bai, G. H., & Klatt, A. R. (2009). Genetic diversity in the US hard red winter wheat cultivars as revealed by microsatellite markers. Crop and Pasture Science, 60(1), 16-24. https://doi.org/10.1071/CP08052
  • Rohlf, F. J. (1998). NTSYS-pc, numerical taxonomy and multivariate system. version 2.0. Exet Software, New York.
  • Röder, M. S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M. H., Leroy, P., & Ganal, M. W. (1998). A microsatellite map of wheat. Genetics, 149(4), 2007-2023. https://doi.org/10.1093/genetics/149.4.2007
  • Tungalag, M., Ariungerel, M., Otgonbayar, B., & Ya, M. (2018). Varietal identification study of six wheat varieties using ISSR markers. Mongolian Journal of Agricultural Sciences, 23(01), 14-17. https://doi.org/10.5564/mjas.v23i01.1014
  • Sen, A., Ozturk, I., Yaycili, O., & Alikamanoglu, S. (2017). Drought tolerance in irradiated wheat mutants studied by genetic and biochemical markers. Journal of Plant Growth Regulation, 36(3), 669-679. https://doi.org/10.1007/s00344-017-9668-8
  • Somers, D. J., Isaac, P., & Edwards, K. (2004). A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 109(6), 1105-1114. https://doi.org/10.1007/s00122-004-1740-7
  • Yadav, V., Kumar, P., & Goyal, M. (2018). Evaluation of genetic diversity in drought tolerant and sensitive varieties of wheat using ISSR markers. Electronic Journal of Plant Breeding, 9(1), 146-153. https://doi.org/10.5958/0975-928X.2018.00017.0
  • Yang, J., Sears, R. G., Gill, B. S., & Paulsen, G. M. (2002). Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica, 126(2), 275-282. https://doi.org/10.1023/A:1016350509689
  • Yildirim, A., Sönmezoğlu, O. A., Gökmen, S., Kandemir, N., & Aydin, N. (2011). Determination of genetic diversity among Turkish durum wheat landraces by microsatellites. African Journal of Biotechnology, 10(19), 3915-3920. https://doi.org/10.5897/AJB10.2240
  • Yıldırım, A., Kandemir, N., Sönmezoğlu, Ö. A., & Güleç, T. E. (2009). Transferability of microsatellite markers among cool season cereals. Biotechnology & Biotechnological Equipment, 23(3), 1299-1302. https://doi.org/10.1080/13102818.2009.10817657