DÜŞÜK SiO2 İÇERİKLİ KUVARS KUMUNUN ZENGİNLEŞTİRME İŞLEMLERİ İLE HAMMADDE KAYNAĞI OLARAK KULLANILABİLİRLİĞİNİN İNCELENMESİ

Bu çalışmada, düşük SiO2 içerikli kuvars kumunun endüstride kullanılabilmesi için demir, titan ve alüminyum gibi safsızlıklardan ayrılmasına yönelik araştırmalar yapılmıştır. Cam-İş Madencilik A.Ş.’den temin edilen %82,03 SiO2, %3,13 Al2O3, %0,48 Fe2O3 ve %0,17 TiO2 içeren silis kumu üzerinde fiziksel, fizikokimyasal ve kimyasal yöntemler uygulanmıştır. Fiziksel yöntem olarak manyetik ayırma ile zenginleştirme yapılmış ancak etkin sonuçlar elde edilememiştir. Dağıtma ve sınıflandırma işleminin ardından pH 9’da gerçekleştirilen flotasyon işleminde ise bastırıcı olarak Na2SiO3 ve kollektör olarak Derna 7 kullanılarak %96,30 SiO2 ve %0,30 Fe2O3 içerikli silis konsantresi elde edilmiştir. Fiziksel ve fizikokimyasal işlemler ile safsızlıklar yeterli derecede uzaklaştırılamadığı için oksalik asit liçi uygulanmıştır. Flotasyon sonrası elde edilen silis konsantresi üzerinde yapılan oksalik asit liçi sonucunda silis kumunda %97,18 SiO2 ve %0,054 Fe2O3 içeriklerine ulaşılmıştır. Dağıtma ve sınıflandırma sonrası oksalik asit liçi ile ise %89,24 SiO2 ve %0,076 Fe2O3 elde edilmiştir.

INVESTIGATION OF THE USABILITY OF QUARTZ SAND CONTAINING LOW SiO2 AS A RAW MATERIAL SOURCE WITH ENRICHMENT PROCESSES

In this study, studies were conducted to remove impurities such as iron, titanium, and aluminum from quartz sand with low SiO2 content for use in industry. Physical, physicochemical, and chemical methods were applied on silica sand containing 82.03% SiO2, 3.13% Al2O3, 0.48% Fe2O3, and 0.17% TiO2 obtained from Camiş Madencilik A.Ş. Magnetic separation was performed as a physical method, but effective results were not obtained. After the dispersion and classification process, the silica concentrate containing SiO2 of 96.30% and Fe2O3 of 0.30% was obtained by using Na2SiO3 as depressant and Derna 7 as collector in the flotation process carried out at pH 9. Since impurities could not be removed sufficiently by physical and physicochemical processes, oxalic acid leaching was applied. As a result of oxalic acid leaching carried out on the silica concentrate obtained with flotation, 97.18% SiO2 and 0.054% Fe2O3 contents were reached in silica sand. Quartz sand with 89.24% SiO2 and 0.076% Fe2O3 content was obtained by directly oxalic acid leaching after dispersion and classification. According to XRD analysis, calcium ions and oxalic acid form calcium oxalate compounds in the material and this situation adversely effects the production of quartz sand with high SiO2 content. It has been determined that the quartz sand used within the scope of the study cannot be used with directly oxalic acid leaching in the sector, but it can be sold its combination with the flotation method.

___

Akçıl, A., Tuncuk, A., Deveci, H., 2007. Kuvarsın Saflaştırılmasında Kullanılan Kimyasal Yöntemlerin İncelenmesi. Madencilik, 46 (4), 3-10.

Atak, S. 2017. Flotasyon Cevher Hazırlamada 100 Yıl. İTÜ Vakfı Yayınları.

Al-Maghrabi, M.N.H., 2004. Improvement of low-grade silica sand deposits in JeddahArea, Engineering Science,15, 113–128.

Ambikadevi, V.R. ve Lalithambika, M., 2000. Effect of organic acids on ferric iron removal from iron-stained kaolinite, Applied Clay Science, 16, 133–145.

Arvamangala, H. ve Natarajan, K.A., 2011. Microbially induced flotation of alumina, silica/calcite from haematite. International Journal of Mineral Processing, 99, 70–77.

Banza, A.N., Quindt, J., Gock, E., 2006. Improvement of the quartz sand processing at Hohenbocka. International Journal of Mineral Processing, 79, 76–82.

Buckland, A.D., Rochester, C.H., Topham, S.A., 1980. Infrared study of the adsorption of carboxylic acids on Hematite and Goethite immersed in carbon tetrachloride. Faraday Trans, 176, 302–313.

Bulatovic, S. M., 2007, Handbook of Flotation Reagents: Chemistry, Theory, and Practice, Amsterdam: Elsevier.

Çilek, E.C., 2006. Mineral Flotasyonu. Süleyman Demirel Üniversitesi yayın No:59, Mühendislik Mimarlık Fakültesi, Isparta.

Du, F., Li, J.S., Li, X.X., Zhang, Z.Z., 2011. Improvement of iron removal from silica sand using ultra-assisted oxalic acid. Ultrasonics Sonochemistry, 18, 389–393.

Han, K.N., Healy, T.W., Fuerstenau, D.W., 1973. The mechanism of adsorption of fatty acids and other surfactants at the oxide-water interface. Journal of Colloid and Interface Science, 44, 407–414.

Karagüzel, C., 2019. Endüstriyel Silikatlar, Özellikleri Ve Zenginleştirme Yöntemleri; Genel Bakış. AYDIN Maden Potansiyelinin Değerlendirilmesi Çalıştayı. TMMOB Maden Mühendisleri Odası Yayını.

Kulkarni, R.D., Somasundaran, P., 1975. Kinetics of oleate adsorption at the liquid/air interface and its role in hematite flotation, AIChE Symp. 71, 124–133.

Lanyon, M.R., Lwin, T., Merritt, R.R., 1999. The dissolution of iron in the hydrochloric acid leach of an ilmenite concentrate, Hydrometallurgy, 51, 299–323.

Lee, S.O., Tran, T., Jung B.H., Kim, S.J. ve Kim, M.J., 2007. Dissolution of Iron Oxide Using Oxalic Acid. Hydrometallurgy, 87, 91-99.

Loritsch, K.B. ve James, R.D., 1991. Purified Quartz and Process for Purifying Quartz. United States Patent, Patent Number : 4,983,370.

Mowla, D., Karimi, G., Ostadnezhad, K., 2008. Removal of hematite from silica sand ore by reverse flotation technique. Separation Purification Technology, 58, 419–423.

Nakhaei, F. ve Irannajad, M. 2018. Reagents types in flotation of iron oxide minerals: A review. Mineral Processing and Extractive Metallurgy Review, 39 (2), 89–124.

Özer, M., Başkurt, B., Burat, F., Baştürkcü, H., 2018. Ön Zenginleştirme Sonrasında Oksalik Asit Kullanımı İle Cam Kumu Tesisi Yan Ürününden Düşük Demir İçerikli Mikronize Kuvars Üretimi. Madencilik, 57(2), 109-116.

Palaniandy, S., Azizli, K.A.M., Hussin, H., Hashim, S.F.S., 2007. Study on mechno-chemical effect of silica for short grinding period. International Journal of Mineral Processing, 82, 195–202.

Patermarakis, G. ve Paspaliaris, Y. 1989. The leaching of iron oxides in boehmitic bauxite by hydrochloric acid. Hydrometallurgy, 23, 77–90.

Pattanaik, A., ve Venugopal, R. 2018. Investigation of Adsorption Mechanism of Reagents (Surfactants) System and its Applicability in Iron Ore Flotation – An Overview. Colloid and Interface Science Communications, 25, 41-65.

Peck, A.S., Raby, L.H., Wadsworth, M.E., 1966. An infrared study of the flotation of hematite with oleic acid and sodium oleate. Trans. Metall. Soc. AIME 235, 301–307.

Rao, H., Dwari, K., Lu, R.K., Vilinska, S., Somasundaran, A.S., 2011. Mixed anionic/nonionic collectors in phosphate gangue flotation from magnetic fines, Open Mineral Processing Journal, 14–24.

Shen, X.M., Peng, Z.S., 2008. Study on removal of iron from Gaoping quartz. J. Xiangtan Univ. (Nat. Sci.) 30, 78–79.

Somasundaran, P., Huang, L., 2000. Adsorption and aggregation of surfactants and their mixtures at solid/liquid interfaces. Advances in Colloid and Interface Science, 88, 179–208.

Srdjan, M., 2007. Handbook of flotation reagents, Elsevier, Amsterdam, Netherlands, 1–144.

Styriaková, I., Štyriak, I., Kraus, I., Hradil, D., Grygar, T., Bezdička, P., 2003. Biodestruction and deferritization of quartz sands by Bacillusspecies. Miner. Eng. 16, 709–713.

Taxiarchou, M., Panias, D., Douni, I., Paspaliaris, I., Kontopoulos, A., 1997. Removal of Iron from Silica Sand by Leaching with Oxalic Acid. Hydrometallurgy, 46, 215-227.

Tuncuk, A. ve Akçıl, A. 2016. Iron removal in production of purified quartz by hydrometallurgical process. International Journal of Mineral Processing. 153, 44-50.

URL-1, www.mta.gov.tr/v3.0/bilgi-merkezi/kuvars-kumu. 15 Ağustos 2020.

URL-2,www.mta.gov.tr/v3.0/bilgi merkezi/kuvarsit. 15 Ağustos 2020.

Xuesong, J., Jian, C., Mengnan, W., Feifei, L., Boyuan, B., Jingwei, L. Effect of impurity content difference between quartz particles on flotation behavior and its mechanism. Powder Technology. 375, 504-512.

Vegliò, F., 1997. Factorial experiments in the development of a kaolin leaching process using thiourea in sulphuric acid solutions. Hydrometallurgy, 45, 181–197

Veglió, F., Passariello, B., Abbruzzese, C., 1999. Iron removal process for high-purity silica sands production by oxalic acid leaching. Industrial & Engineering Chemistry Research, 38, 4443–4448.

Zhou, Y.H., 2005. Acidic leaching experiments of highly pure quartz sand. Miner. Rock, 25, 23–26.