KUYUMCULUK KÖKENLİ ARTIKLARDAN ALTIN VE GÜMÜŞÜN GERİ KAZANIMI

Bu çalışmada, kuyumcu atölyelerindeki çeşitli faaliyetler sonucunda açığa çıkan, yüksek altın ve gümüş içeriklerine sahip zemin süpürme artıklarından metalik değerlerin gravite yöntemleri ile geri kazanılması amaçlanmıştır. Ayrıca, bu artıklardaki değerli metalleri kazanmak için uygulanan ısıl işlemler sonucunda oluşan cüruf içerisinde kalan altın ve gümüşü konsantre etmek amacıyla santrifüj ayırıcılar kullanılarak zenginleştirme deneyleri yapılmıştır. Yüksek metal içeriklerine sahip zemin süpürme artığı ile sarsıntılı masa, MGS (multi gravite separator) ve Knelson konsantratörü kullanılarak yapılan zenginleştirme işlemleri sonucunda, ağırlıkça %24,2 oranında bir ağır ürün 638 g/t Au ve 6227 g/t Ag içerikleri ile üretilmiş, metal kazanma verimleri ise sırasıyla %84,4 ve %82,2 olarak bulunmuştur. Cüruf içerisinde ince boyutlarda hapsolmuş altın ve gümüş’ün kazanılması amacıyla malzeme ilk olarak 100 μm altına öğütülmüş ve daha sonra santrifujlü ayırıcılara beslenmiştir. Knelson konsantratörü ile yapılan zenginleştime çalışmalarının sonucunda, ağırlıkça %13,8 oranında bir ağır ürün 30 g/t Au ve 52 g/t Ag içerikleri ile elde edilmiş olup, metal kazanma verimleri sırasıyla % 64,6 ve % 44,4 olarak bulunmuştur.

RECOVERY OF GOLD AND SILVER FROM WASTES GENERATED IN JEWELRY PRODUCTION

In this study, it was aimed to recover metallic values by gravity methods from the floor sweeping waste with high gold and silver contents, which are produced as a result of various activities in the jewelry workshops. In addition, the metallic values that remains in the slag phase after thermal process of the floor sweeping wastes were concentrated by centrifugal separators. As a result of gravity separation tests in which the floor sweeping waste subjected to shaking table, MGS (multi gravity separator) and Knelson concentrator, a heavy product (24.2% wt.) was produced with 638 g/t Au and 6227 g/t Ag grades and the metal recovery rates were calculated as 84.4% and 82.2%, respectively. The slag was first ground below 100 μm and then fed to the centrifugal separators in order to obtain fine size gold and silver particles that were trapped in the glassy phase. As a result of enrichment studies with Knelson concentrator, a concentrate (13.8% wt.) was obtained with 30 g/t Au and 52 g/t Ag grades, and the metal recoveries were found as 64.6% and 44.4%, respectively.

___

  • Akcil, A., Erust, C., Gahan, S., Ozgun, M., Sahin, M., Tuncuk, A., 2015. Precious Metal Recovery from Waste Printed Circuit Boards Using Cyanide and Non-Cyanide Lixiviants–A Review. Waste Management, 45, 258–271. doi:10.1016/j.wasman.2015.01.017.
  • Ammen, C. W., 1997. Recovery and Refining of Precious Metals. 2nd ed. New York: Chapman & Hall.
  • Aydın, Ş. B., Gül, A., 2020. Environmentally Friendly Process Instead of Cyanide Leaching on Recycling of Gold and Silver from Jewellery Scraps and Wastes. Waste Management & Research, https://doi. org/10.1177/073424 2X20931947.
  • Burat, F., Özer, M., 2018. Physical Separation Route for Printed Circuit Boards (PCBs). Physicochemical Problems of Mineral Processing, 54, (2), 554-566.
  • Burat, F., Baştürkcü, H., Özer, M., 2019. Gold&silver Recovery from Jewelry Waste with Combination of Physical and Physicochemical Methods. Waste Management, 89, 10-20, (2019).
  • Burat, F., Demirağ, A., Şafak, M. C., 2020. Recovery of Noble Metals from Floor Sweeping Jewelry Waste by Flotation Cyanide Leaching. Journal of Material Cycles and Waste Management, 22, 907-915.
  • Canda, L., Heput, T., Ardelean, E., 2016. Methods for Recovering Precious Metal from Industrial Waste. IOP Conf. Series: Materials Science and Engineering. 106.
  • Chmielewski, A. G., Urbanski, T. S., Migdal, W., 1997. Separation Technologies for Metals Recovery from Industrial Wastes. Hydrometallurgy, 45, 333-344.
  • Corti, C. W., 1997a. Recovery and Recycling In Gold Jewellery Production. Gold Technology, 21, 11.
  • Corti, C. W., 1997b. In-House Gold Refining: The Options. Gold Technology, 21, 31.
  • Corti, C. W., 2002. Recovery and Refining of Gold Jewellery Scraps and Wastes. The Santa Fe Symposium on Jewellery Manufacturing Technology, 1-20. London.
  • Delfini, M., Manni, A., Massacci, P., 2000. Gold Recovery from Jewellery Waste. Minerals Engineering, 13 (6), 663- 666.
  • Ferrini, M., Manni, A., Massacci, P., 1998. Chemical Analyses by ICP-AES of Jewellery Waste in Italy. In Proc. Biennial International Conference on Chemical Measurement and Monitoring of the Environment. Enviro Analysis 98, Ottawa, 501-506.
  • Garside, M., 2020. Gold Demand Worldwide, https:// www.statista.com/statistics/299609/gold-demand-by- industry-sector-share/. Yayın tarihi 10 Temmuz. Erişim tarihi 26 Temmuz 2020.
  • Houseley K., Apling A. C., Chapman R. J., 1998. Effect of Particle Size and Shape on Recovery of Gold By Use of A Knelson Concentrator. Innovation in Physical Separation Technologies, Richard Mozley Symposium, 65-72.
  • Kaya, M. 2016. Recovery of Metals and Nonmetals from Electronic Waste by Physical and Chemical Recycling Processes. Waste Management, 57, 64–90. doi:10.1016/j.wasman.2016.08.004.
  • Kaspin, S., Mohamad, N., 2015. Investigating the Standard Process of Conventional Gold Refining Process In Kelantan. Malaysia, 2015 International Conference on Sustainable Energy and Environmental Engineering.
  • Loewen, R., 1989. Refining Jeweler’s Wastes. Proceedings, Santa Fe Symposium on Jewelry Manufacturing Technology, 331.
  • Manni, A. İ, Saviano, G., Massacci, P., 2001. Technical Note: Characterization of Gold Particles in Recoverable Waste Matrix. Minerals Engineering, 14 (12), 1679-1684.
  • Mbaya, R. K. K., 2004. Recovery of Noble Metals from Jewellery Wastes, Tshwane University of Technology, Doctorate Thesis.
  • Potgieter, J. H., Potgieter, S. S, Mbaya, R. K. K., Teodorovic, A, 2004. Small-Scale Recovery of Noble Metals from Jewellery Wastes. The Journal of The South African Institute of Mining and Metallurgy, 563-572.
  • Sabah, E, Şapçı, F. O., 2020. Ramat Geri Kazanım Prosesinde Açığa Çıkan Cüruflardan Gravite Ayırması ile Altın Kazanımı. Politeknik Dergisi, doi:10.2339/ politeknik.742859.
  • Spiller D. E., 1983. Gravity Separation of Gold Then and Now, Mining Yearbook, Colorado Mining Association, Colorado.
  • Yazıcı, E. Y., Deveci, H., 2014. Ferric Sulphate Leaching of Metals from Waste Printed Circuit Boards. International Journal of Mineral Processing, 133, 39-45.
  • Wills, B. A. and Napier-Munn, T., 2006. Wills’ Mineral Processing Technology. 7th Edition, Butterworth- Heinemann, Oxford.