V2G Şarj İstasyonlarının Optimum Konum ve Kapasitelerinin Gri Kurt Optimizasyon Algoritması ile Belirlenmesi

Dünyada nüfusun artması ile birlikte enerji ihtiyacında gerçekleşen büyük artış fosil kaynakların hızlı bir şekilde tükenmesine neden olmaktadır. Fosil yakıtlara olan bağımlılıktan kurtulmak ve sera gazı emisyonlarını azaltmak için ülkeler düşük karbon stratejisi uygulamaktadır. Gelişmiş ülkelerin elektrikli araçlar (EV) teknolojisine yaptığı yatırımlar göz önüne alındığında artan EV şarj gücünün elektrik şebekesine olumsuz şekilde yansıyacağı öngörülmektedir. Bunun yanında, EV şarj gücünü avantaja çevirmek adına EV bataryalarında depolanan enerjinin şebekeye aktarılabildiği, araçtan şebekeye (Vehicle to Grid-V2G) kavramı önem kazanmaktadır. Puant zamanlarda, V2G şarj istasyonları şebekede dağıtık üretim kaynağı olarak değerlendirilebilmektedir. V2G şarj istasyonlarının şebekeye katkısının optimum şekilde olabilmesi için konumu ve kapasitesi önemlidir. Bu çalışmada, V2G şarj istasyonlarının puant zamanlarda şebekeye enerji aktarımı yapması amacıyla en uygun konum ve kapasitede yerleşimi sağlanmaktadır. Hat kayıplarının minimize edilmesi, hedef fonksiyon olarak tanımlanmıştır. V2G şarj istasyonlarının optimum yerleşimi için Gri Kurt Optimizasyon Algoritması (GWO) kullanılmış ve sonuçlar Sinüs Kosinüs Algoritması (SCA) ve Şempanze Optimizasyon Algoritması (COA) ile karşılaştırmalı olarak sunulmuştur. Algoritmalar 34-baralı ve 85-baralı test sistemleri için çalıştırılmıştır. Her iki test sisteminde de en başarılı sonuçları veren algoritma GWO olmuştur. 

Determination of Optimum Position and Capacity of V2G Charging Stations with Grey Wolf Optimization Algorithm

The large increase in energy requirement with the increase in population in the world leads to a rapid depletion of fossil resources. To get rid of dependence on fossil fuels and to reduce greenhouse gas emissions, countries are implementing a low-carbon strategy. It is expected that increased electric vehicles (EV) charging power will negatively affect the electricity when investments of developed countries in EV technology are considered. In addition, the concept of Vehicle to Grid (V2G), in which the stored energy in EV batteries can be transferred to the grid in order to turn EV charging power to an advantage, comes into prominence. V2G charging stations can be utilized as a distributed generation source in the network. The location and the capacity of V2G charging are important for optimum contribution to the grid. In this study, the placement of V2G charging stations in the optimal location and capacity is provided to transfer energy to the network at peak times. Minimizing of line losses is defined as the objective function. The Grey Wolf Optimization Algorithm (GWO) is used for optimal placement of V2G charging stations. The results were presented in comparison with the Sin Cos Algorithm (SCA) and the Chimpanzee Optimization Algorithm (COA). The algorithms were run for 34-bus and 85-bus test systems. GWO algorithm has achieved the best result for both test systems.

___

  • [1] Technology report. (2019). IEA Global EV Report. https://www.iea.org/reports/global-ev-outlook-2019. (03.04.2021).
  • [2] Su, C. L., Leou, R. C., Yang, J. C., & Lu, C. N. (2013). Optimal Electric Vehicle Charging Stations Placement in Distribution Systems. IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, 2121-2126.
  • [3] Wirasingha, S. G., Schofield, N., & Emadi, A. (2008). Plug-in Hybrid Electric Vehicle Developments in the US: Trends, Barriers, and Economic Feasibility. 2008 IEEE Vehicle Power and Propulsion Conference, China, 1-8.
  • [4] Nyns, K. C., Haesen, E., & Driesen, J. (2011). The İmpact of Vehicle-to-Grid on the Distribution Grid. Electric Power Systems Research, 81(1), 185-192.
  • [5] Nurmuhammed, M., & Karadağ, T. (2021). Elektrikli Araç Şarj İstasyonlarının Konumlandırılması ve Enerji Şebekesi Üzerine Etkisi Konulu Derleme Çalışması. Gazi University Journal of Science Part A: Engineering and Innovation, 8(2), 30-45.
  • [6] Amini, M. H., & Islam, A. (2014). Allocation of Electric Vehicles' Parking Lots in Distribution Network. ISGT 2014, Washington, DC, 1-5.
  • [7] El-Zonkoly, A., & Coelho, L. S. (2014). Optimal Allocation, Sizing of PHEV Parking Lots in Distribution System. International Journal of Electrical Power & Energy Systems, 67, 472-477.
  • [8] Sadeghi-Barzani, P., Rajabi-Ghahnavieh, A., & Kazemi-Karegar, H. (2014). Optimal Fast Charging Station Placing and Sizing. Applied Energy, 125, 289-299.
  • [9] Gampa, S. R., Jasthi, K., Goli, P., Das, D., & Bansal, R. C. (2020). Grasshopper Optimization Algorithm Based Two Stage Fuzzy Multiobjective Approach for Optimum Sizing and Placement of Distributed Generations, Shunt Capacitors and Electric Vehicle Charging Stations. Journal of Energy Storage, 27, 101117.
  • [10] Awasthi, A., Venkitusamy, K., Padmanaban, S., Selvamuthukumaran, R., Blaabjerg, F., & Singh, A. K. (2017). Optimal Planning of Electric Vehicle Charging Station at The Distribution System Using Hybrid Optimization Algorithm. Energy, 133, 70-78.
  • [11] Faddel, S., Elsayed, A. T., & Mohammed, O. A. (2018). Bilayer Multi-Objective Optimal Allocation and Sizing of Electric Vehicle Parking Garage. IEEE Transactions on Industry Applications, 54(3), 1992-2001.
  • [12] Zheng, Y., Dong, Z. Y., Xu, Y., Meng, K., Zhao, J. H., & Qiu, J. (2014). Electric Vehicle Battery Charging/Swap Stations in Distribution Systems: Comparison Study and Optimal Planning. IEEE Transactions on Power Systems, 29(1), 221-229.
  • [13] Domínguez-Navarro, J.A., Dufo-López, R., Yusta-Loyo, J. M., Artal-Sevil, J.S., & Bernal-Agustín, J.L. (2019). Design of an Electric Vehicle Fast-Charging Station with Integration of Renewable Energy and Storage Systems. International Journal of Electrical Power & Energy Systems, 105, 46-58.
  • [14] Habib, S., Kamran, M., & Rashid, U. (2015). Impact Analysis of Vehicle-to-Grid Technology and Charging Strategies of Electric Vehicles on Distribution Networks – A review. Journal of Power Sources, 277, 205- 214.
  • [15] Dogan, A., Bahceci, S., Daldaban, F., & Alçı, M. (2018). Optimization of Charge/Discharge Coordination to Satisfy Network Requirements Using Heuristic Algorithms in Vehicle-to-Grid Concept. Advances in Electrical and Computer Engineering, 18, 121-130.
  • [16] Dogan A., & Alci, M., (2018). Heuristic Optimization of EV Charging Schedule Considering Battery Degradation Cost, Elektronika Ir Elektrotechnika, 24, 15-20.
  • [17] Prasomthong, J., Ongsakul, W., & Meyer, J. (2014). Optimal Placement of Vehicle-to-Grid Charging Station in Distribution System using Particle Swarm Optimization with Time Varying Acceleration Coefficient. 2014 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE), Thailand, 1-8.
  • [18] Aljanad, A., Mohamed, A., Shareef, H., & Khatib, T. (2018). A Novel Method for Optimal Placement of Vehicle-to-Grid Charging Stations in Distribution Power System Using a Quantum Binary Lightning Search Algorithm. Sustainable Cities and Society, 38, 174-183.
  • [19] Yong, J. Y., Ramachandaramurthy, V. K., Tan, K. M., & Mithulananthan, N. (2015). A Review on the State- of-the-Art Technologies of Electric Vehicle, İts İmpacts and Prospects. Renewable and Sustainable Energy Reviews, 49, 365-385.
  • [20] Mwasilu, F., Justo, J. J., Kim, E. K., Do, T. D., & Jung, J. W. (2014). Electric Vehicles and Smart Grid İnteraction: A Review on Vehicle to Grid and Renewable Energy Sources İntegration. Renewable and Sustainable Energy Reviews, 34, 501-516.
  • [21] Tan, K. M., Ramachandaramurthy, V. K., & Yong, J. Y. (2016). Integration of Electric Vehicles in Smart Grid: A Review on Vehicle to Grid Technologies and Optimization Techniques. Renewable and Sustainable Energy Reviews, 53, 720-732.
  • [22] Su, C. T., Chang, C. F., & Chiou, J. P. (2005). Distribution Network Reconfiguration for Loss Reduction by Ant Colony Search Algorithm. Electr. Power Syst. Res., 75, 190–199.
  • [23] Abou El-Ela, A. A., El-Sehiemy, R. A., Kinawy, A. M., & Mouwafi, M. T. (2016). Optimal Capacitor Placement in Distribution Systems for Power Loss Reduction and Voltage Profile Improvement. IET Gener. Transm. Distrib., 10, 1209– 1221.
  • [24] Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering Software, 69, 46-61.
  • [25] Mirjalili, S. (2016). SCA: A Sine Cosine Algorithm for Solving Optimization Problems. Knowledge-Based Systems, 96, 120-133.
  • [26] Demir, G., & Tanyıldızı, E. (2017). Optimizasyon Problemlerinin Çözümünde Sinüs Kosinüs Algoritması (SKA)’nın Kullanılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 29(1), 225-236.
  • [27] Khishe, M., & Mosavi, M. R. (2020). Chimp Optimization Algorithm. Expert Systems with Applications, 149, 113338.
  • [28] Jia, H., Sun, K., Zhang, W., & Leng, X. (2021). An Enhanced Chimp Optimization Algorithm for Continuous Optimization Domains. Complex Intell. Syst.
  • [29] Prakash, D. B., & Lakshminarayana, C. (2016). Optimal Siting of Capacitors in Radial Distribution Network Using Whale Optimization Algorithm. Alexandria Engineering Journal, 56(4), 499-509.