Kereste Fabrikası Atığından Açık-Hücreli Karbon Köpük Üretimi ve Karakterizasyonu

Son yıllarda, yenilenemeyen fosil yakıt-esaslı hammaddelere alternatif olarak yenilenebilir atık biyokütleden düşük maliyetli karbon köpük hazırlanması üzerindeki çalışmalar oldukça dikkat çekmektedir. Bu kapsamda gerçekleştirilen çalışmada, i) kereste fabrikası atığı olan gürgen talaşının katranından karbon köpük üretilmesi; ii) ürünün elementel bileşiminin, yapısal, morfolojik ve kristalografik özelliklerinin kimyasal aktivasyon işlemi ile çeşitlendirilmesi amaçlanmıştır. Hammaddenin elementel karbon içeriği (%45,99) ile kıyaslandığında %78,88-88,37 oranında daha yüksek karbon içeriğine sahip karbon köpükler hazırlanmıştır. Aktivasyon işlemi ile karbon köpüğün gözenek boyut dağılımının daha homojen olduğu ve yüzey alanının 59,821 m2/g değerinden 1004,184 m2/g’a yükseldiği, buna rağmen kristal yapının korunduğu ve benzer x-ışını kırınım profillerine sahip köpüklerin üretildiği belirlenmiştir. Ayrıca, kimyasal aktivasyon işlemi ile yapıda oluşan çatlaklara ve kırılmalara bağlı olarak artan yüzey alanına karşılık basma dayanımı değerinin düştüğü gözlenmiştir. Özetle, uygulama alanı göz önünde bulundurularak odun-esaslı karbon köpük hazırlanmasında gerçekleştirilen kimyasal aktivasyon işleminin ürün özelliklerini önemli derecede etkileyebileceği sonucuna ulaşılmıştır.

Production and Characterization of Open-Celled Carbon Foams from Sawmill Waste

In recent years, studies on the preparation of low-cost carbon foam from renewable waste biomass as an alternative to non-renewable fossil fuel-based raw materials have attracted considerable attention. In this study, it is aimed i) to produce carbon foam from the tar of hornbeam sawdust, which is a sawmill waste; ii) to diversify the elemental composition, structural, morphological, and crystallographic properties of the product with the chemical activation process. Carbon foams with 78.88-88.37% higher carbon content were prepared compared to the elemental carbon content of the raw material (45.99%). It was determined that the pore size distribution of the carbon foam was more uniform with the activation process, and the surface area increased from 59,821 m2/g to 1004,184 m2/g, after all the crystal structure was preserved and foams with similar x-ray diffraction profiles were produced. In addition, it was observed that the compressive strength value decreased in response to the increased surface area due to cracks and breaks in the structure with the chemical activation process. In summary, it was concluded that the chemical activation process performed in the preparation of wood-based carbon foam considering the application area can significantly affect the product properties.

___

  • [1] Suda, H., & Haraya, K. (1997). Alkene/alkane permselectivities of a carbon molecular sieve membrane. Chemical Communications, (1), 93-94.
  • [2] Velasco, L. F., Tsyntsarski, B., Petrova, B., Budinova, T., Petrov, N., Parra, J. B., & Ania, C. O. (2010). Carbon foams as catalyst supports for phenol photodegradation. Journal of Hazardous Materials, 184(1-3), 843-848.
  • [3] Rodriguez-Reinoso, F. (1998). The role of carbon materials in heterogeneous catalysis. Carbon, 36(3), 159- 175.
  • [4] Lv, Y., Liu, M., Gan, L., Cao, Y., Chen, L., Xiong, W., Xu, Z., Hao, Z., Liu, H, & Chen, L. (2011). Synthesis of sodium-vanadate-doped ordered mesoporous carbon foams as capacitor electrode materials. Chemistry Letters, 40(3), 236-238.
  • [5] Wang, D. W., Li, F., Liu, M., Lu, G. Q., & Cheng, H. M. (2008). 3D aperiodic hierarchical porous graphitic carbon material for high rate electrochemical capacitive energy storage. Angewandte Chemie International Edition, 47(2), 373-376.
  • [6] Rolison, D. R. (2003). Catalytic nanoarchitectures--the importance of nothing and the unimportance of periodicity. Science, 299(5613), 1698-1701.
  • [7] Morishita, T., Soneda, Y., Tsumura, T., & Inagaki, M. (2006). Preparation of porous carbons from thermoplastic precursors and their performance for electric double layer capacitors. Carbon, 44(12), 2360- 2367.
  • [8] Chmiola, J., Yushin, G., Gogotsi, Y., Portet, C., Simon, P., & Taberna, P. L. (2006). Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science, 313(5794), 1760-1763.
  • [9] Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C. H., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tomanek, D., Fischer, J. E., & Smalley, R. E. (1996). Crystalline ropes of metallic carbon nanotubes. Science, 273(5274), 483-487.
  • [10] Journet, C., Maser, W. K., Bernier, P., Loiseau, A., de La Chapelle, M. L., Lefrant, D. S., Deniard, P., Lee, R., & Fischer, J. E. (1997). Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 388(6644), 756-758.
  • [11] Zheng, B., Lu, C., Gu, G., Makarovski, A., Finkelstein, G., & Liu, J. (2002). Efficient CVD growth of single- walled carbon nanotubes on surfaces using carbon monoxide precursor. Nano Letters, 2(8), 895-898.
  • [12] Liu, M., Gan, L., Tian, C., Zhu, J., Xu, Z., Hao, Z., & Chen, L. (2007). Mesoporous carbon foams through surfactant templating. Carbon, 15(45), 3045-3046.
  • [13] Kim, T. W., Park, I. S., & Ryoo, R. (2003). A synthetic route to ordered mesoporous carbon materials with graphitic pore walls. AngewandteChemie, 42(36), 4375–4379.
  • [14] Xu, B., Wu, F., Chen, R., Cao, G., Chen, S., & Yang, Y. (2010). Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte. Journal of Power Sources, 195(7), 2118-2124.
  • [15] Jang, Y. I., Dudney, N. J., Tiegs, T. N., & Klett, J. W. (2006). Evaluation of the electrochemical stability of graphite foams as current collectors for lead acid batteries. Journal of Power Sources, 161(2), 1392-1399.
  • [16] Liu, H. J., Wang, X. M., Cui, W. J., Dou, Y. Q., Zhao, D. Y., & Xia, Y. Y. (2010). Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells. Journal of Materials Chemistry, 20(20), 4223-4230.
  • [17] Raymundo Piñero, E., Leroux, F., & Béguin, F. (2006). A high performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Advanced Materials, 18(14), 1877-1882.
  • [18] Ruan, G., Sun, Z., Peng, Z., & Tour, J. M. (2011). Growth of graphene from food, insects, and waste. ACS Nano, 5(9), 7601-7607.
  • [19] Lv, Y., Gan, L., Liu, M., Xiong, W., Xu, Z., Zhu, D., & Wright, D. S. (2012). A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes. Journal of Power Sources, 209, 152-157.
  • [20] Sun, L., Wan, S., Yuan, D., & Yu, Z. (2019). Adsorption of nitroimidazole antibiotics from aqueous solutions on self-shaping porous biomass carbon foam pellets derived from Vallisnerianatans waste as a new adsorbent. Science of the Total Environment, 664, 24-36.
  • [21] Song, S. A., Lee, Y., Kim, Y. S., & Kim, S. S. (2017). Mechanical and thermal properties of carbon foam derived from phenolic foam reinforced with composite particles. Composite Structures, 173, 1-8.
  • [22] Liu, M., Gan, L., Zhao, F., Fan, X., Xu, H., Wu, F., Xu, Z., Hao, Z., & Chen, L. (2007). Carbon foams with high compressive strength derived from polyarylacetylene resin. Carbon, 15(45), 3055-3057.
  • [23] Zhou, P., & Chen, Q. L. (2016). Preparation and characterization of carbon foam derived from coal pitch. Journal of Analytical and Applied Pyrolysis, 122, 370-376.
  • [24] Fawcett, W., & Shetty, D. K. (2010). Effects of carbon nanofibers on cell morphology, thermal conductivity and crush strength of carbon foam. Carbon, 48(1), 68-80.
  • [25] Mochida, I., Korai, Y., Ku, C. H., Watanabe, F., & Sakai, Y. (2000). Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch. Carbon, 38(2), 305-328.
  • [26] Li, J., Wang, C., Zhan, L., Qiao, W. M., Liang, X. Y., & Ling, L. C. (2009). Carbon foams prepared by supercritical foaming method. Carbon, 47(4), 1204-1206.
  • [27] Lei, S., Guo, Q., Shi, J., & Liu, L. (2010). Preparation of phenolic-based carbon foam with controllable pore structure and high compressive strength. Carbon, 48(9), 2644-2646.
  • [28] Min, G., Zengmin, S., Weidong, C., & Hui, L. (2007). Anisotropy of mesophase pitch-derived carbon foams. Carbon, 45(1), 141-145.
  • [29] Zhang, C., Wang, C., Zhan, L., Wang, C., Wang, Y., & Ling, L. (2011). Synthesis of carbon foam covered with carbon nanofibers as catalyst support for gas phase catalytic reactions. Materials Letters, 65(12), 1889- 1891.
  • [30] Li, T. Q., Wang, C. Y., An, B. X., & Wang, H. (2005). Preparation of graphitic carbon foam using size- restriction method under atmospheric pressure. Carbon, 43(9), 2030-2032.
  • [31] Petrova, B., Tsyntsarski, B., Budinova, T., Petrov, N., Velasco, L. F., & Ania, C. O. (2011). Activated carbon from coal tar pitch and furfural for the removal of p-nitrophenol and m-aminophenol. Chemical Engineering Journal, 172(1), 102-108.
  • [32] Wang, L., Wang, J., Jia, F., Wang, C., & Chen, M. (2013). Nanoporous carbon synthesised with coal tar pitch and its capacitive performance. Journal of Materials Chemistry A, 1(33), 9498-9507.
  • [33] He, X., Zhao, N., Qiu, J., Xiao, N., Yu, M., Yu, C., Zhang, X., & Zheng, M. (2013). Synthesis of hierarchical porous carbons for supercapacitors from coal tar pitch with nano-Fe 2 O 3 as template and activation agent coupled with KOH activation. Journal of Materials Chemistry A, 1(33), 9440-9448.
  • [34] Li, D., Li, Y., Liu, H., Ma, J., Liu, Z., Gai, C., & Jiao, W. (2019). Synthesis of biomass tar-derived foams through spontaneous foaming for ultra-efficient herbicide removal from aqueous solution. Science of the Total Environment, 673, 110-119.
  • [35] Yargic, A. S., & Ozbay, N. (2019). Effect of chemical activation on the cellular structure of biopitch-derived green carbon foam. Diamond and Related Materials, 96, 58-66.
  • [36] Yargic, A. S. (2021). Current Engineering Sciences Research, Chapter-1-Conversion of Biopitch to Carbon Foam with Tunable Properties: The Role of Chemical Activation, Livre de Lyon, Lyon,1-22.
  • [37] Ozbay, N., & Yargic, A. S. (2019). Carbon foam production from bio based polyols of liquefied spruce tree sawdust: Effects of biomass/solvent mass ratio and pyrolytic oil addition. Journal of Applied Polymer Science, 136(11), 47185.
  • [38] Tondi, G., Pizzi, A., Delmotte, L., Parmentier, J., & Gadiou, R. (2010). Chemical activation of tannin–furanic carbon foams. Industrial Crops and Products, 31(2), 327-334.
  • [39] Harker, J. H., & Backhurst, J. R. (1981). Fuel and energy. Academic Press Limited, London.
  • [40] Yargıç, A. Ş., Şahin, R. Z. Y., & Özbay, N (2021). Biyo-poliol-esaslı karbon köpüğün yapısal özellikleri üzerinde çözücü türü etkisinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 36(1), 133-146.
  • [41] Apaydın-Varol, E., & Erülken, Y. (2015). A study on the porosity development for biomass based carbonaceous materials. Journal of the Taiwan Institute of Chemical Engineers, 54, 37-44.
  • [42] Xu, G.,Yang, T., Fang, Z., Wang, Q., Yang, C., & Zhao, X. (2018). Preparation and characterization of coal- based carbon foams by microwave heating process under ambient pressure. Diamond and Related Materials, 86, 63-70.
  • [43] Sun, Y., & Webley, P. A. (2011). Preparation of activated carbons with large specific surface areas from biomass corncob and their adsorption equilibrium for methane, carbon dioxide, nitrogen, and hydrogen. Industrial & Engineering Chemistry Research, 50(15), 9286-9294.
  • [44] Prauchner, M. J., Pasa, V. M., & de Menezes, S. M. (2001). Solid-state 13C NMR quantitative study of Eucalyptus tar pitches. Journal of Wood Chemistry and Technology, 21(4), 371-385.
  • [45] Prauchner, M. J., Pasa, V. M., Otani, C., Otani, S., & de Menezes, S. M. (2004). Eucalyptus tar pitch pretreatment for carbon material processing. Journal of Applied Polymer Science, 91(3), 1604-1611.
  • [46] Prauchner, M. J., Pasa, V. M., Otani, C., & Otani, S. (2001). Characterization and thermal polymerization of Eucalyptus tar pitches. Energy & Fuels, 15(2), 449-454.
  • [47] Araujo, R. C. S., & Pasa, V. M. D. (2003). Mechanical and thermal properties of polyurethane elastomers based on hydroxyl terminated polybutadienes and biopitch. Journal of Applied Polymer Science, 88(3), 759- 766.
  • [48] Araújo, R. C. S., & Pasa, V. M. D. (2004). New Eucalyptus tar-derived polyurethane coatings. Progress in Organic Coatings, 51(1), 6-14.
  • [49] Melo, B. N., & Pasa, V. M. (2003). Composites based on eucalyptus tar pitch/castor oil polyurethane and short sisal fibers. Journal of Applied Polymer Science, 89(14), 3797-3802.
  • [50] Gamlen, P. H., & White, J. W. (1976). Structure and dynamics of microcrystalline graphite, graphon, by neutron scattering. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 72, 446-455.
  • [51] Girgis, B. S., Yunis, S. S., & Soliman, A. M. (2002). Characteristics of activated carbon from peanut hulls in relation to conditions of preparation. Materials Letters, 57(1), 164-172.
  • [52] Lopez, F. A., Centeno, T. A., Garcia-Diaz, I., & Alguacil, F. J. (2013). Textural and fuel characteristics of the chars produced by the pyrolysis of waste wood, and the properties of activated carbons prepared from them. Journal of Analytical and Applied Pyrolysis, 104, 551-558.
  • [53] Tushar, M. S. H. K., Mahinpey, N., Khan, A., Ibrahim, H., Kumar, P., & Idem, R. (2012). Production, characterization and reactivity studies of chars produced by the isothermal pyrolysis of flax straw. Biomass and Bioenergy, 37, 97-105.
  • [54] Zhang, S., Zheng, M., Lin, Z., Li, N., Liu, Y., Zhao, B., Pang, H., Cao, J., He, P. & Shi, Y. (2014). Activated carbon with ultrahigh specific surface area synthesized from natural plant material for lithium–sulfur batteries. Journal of Materials Chemistry A, 2(38), 15889-15896.
  • [55] Prauchner, M. J., Pasa, V. M., Molhallem, N. D., Otani, C., Otani, S., & Pardini, L. C. (2005). Structural evolution of Eucalyptus tar pitch-based carbons during carbonization. Biomass and Bioenergy, 28(1), 53-61.
  • [56] Wang, M. X., Wang, C. Y., Li, T. Q., & Hu, Z. J. (2008). Preparation of mesophase-pitch-based carbon foams at low pressures. Carbon, 46(1), 84-91.
  • [57] Hull, A. (1926). Berichte der Deutschen Chemischen Gesellschaft, 59, 2433-2444.
  • [58] Li, W., Huang, Z., Wu, Y., Zhao, X., & Liu, S. (2015). Honeycomb carbon foams with tunable pore structures prepared from liquefied larch sawdust by self-foaming. Industrial Crops and Products, 64, 215-223.
  • [59] Lipson, H., &Stokes, A. R. (1942). A new structure of carbon. Nature, 149(3777), 328-328.
  • [60] Wang, R., Li, W., & Liu, S. (2012). A porous carbon foam prepared from liquefied birch sawdust. Journal of Materials Science, 47(4), 1977-1984.
  • [61] Strano, M. S., Zydney, A. L., Barth, H., Wooler, G., Agarwal, H., & Foley, H. C. (2002). Ultrafiltration membrane synthesis by nanoscale templating of porous carbon. Journal of Membrane Science, 198(2), 173- 186.
  • [62] Fayos, J. (1999). Possible 3D carbon structures as progressive intermediates in graphite to diamond phase transition. Journal of Solid State Chemistry, 148(2), 278-285.
  • [63] Luo, X., Mohanty, A., & Misra, M. (2013). Lignin as a reactive reinforcing filler for water-blown rigid biofoam composites from soy oil-based polyurethane. Industrial Crops and Products, 47, 13-19.
Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: 2
  • Başlangıç: 2014
  • Yayıncı: BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ