Nanoparçacık Eklenmesi ile Metakrilat Esaslı Kontak Lenslerin Mikromekanik ve Optik Özelliklerinin Geliştirilmesi

Öz Atomik kuvvet mikroskobisi (AFM) ve kuvvet spektroskopisi (FS) malzemenin mekanik özelliklerinin nanoölçekte belirlenmesini sağlayan bir yöntemdir. Bu çalışmada, birinci nesil kontak lens malzemesi olan metakrilat (MA) temelli kopolimerler kullanılarak üretilen lenslerin mekanik ve optik özelliklerinin geliştirilmesi amaçlanmıştır. Farklı içeriklerde ve farklı çapraz bağlanma oranlarında üretilen kontak lenslere in situ polimerizasyon süreci ile nanoparçacık ilave edilmiş ve mekanik testleri AFM kullanılarak gerçekleştirilerek elastik davranışları incelenmiştir. Nanoparçacık ilavesi ile değişen optik özellikler ise elipsometre kullanılarak karakterize edilmiştir. Düşük miktarlarda (kütlece %2’den az) nanoparçacık ilavesi ile elastik deformasyon özelliklerinde 2 kat kadar artış ve özellikle UV bölgede ışık soğurum oranında artış elde edilmiştir. MA neslinden olan (1. Nesil) lenslerin, üretim yönteminde büyük değişiklikler yapılmaksızın daha yüksek dayanım ve olumlu optik özellikler içerecek şekilde üretilmesinin mümkün olduğu kanıtlanmıştır.

Improvement of micromechanical and optical properties of methacrylate based contact lenses by addition of nanoparticles

___

  • [1] Musgrave, C.S.A. and F. Fang, contact lens materials: A materials science perspective. Materials (Basel, Switzerland), 2019. 12(2): p. 261.
  • [2] Ali, U., K.J.B.A. Karim, and N.A. Buang, A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polymer Reviews, 2015. 55(4): p. 678-705.
  • [3] Kopeček, J., Hydrogels from soft contact lenses and implants to self-assembled nanomaterials. Journal of polymer science. Part A, Polymer Chemistry, 2009. 47(22): p. 5929-5946.
  • [4] Guillon, M., Are silicone hydrogel contact lenses more comfortable than hydrogel contact lenses? Eye Contact Lens, 2013. 39(1): p. 86-92.
  • [5] Edrington, T.B., A literature review: The impact of rotational stabilization methods on toric soft contact lens performance. Contact Lens and Anterior Eye, 2011. 34(3): p. 104-110.
  • [6] Newlove, D., Contact lens manufacture — A world review. Journal of The British Contact Lens Association, 1982. 5(1): p. 2-14.
  • [7] Kim, E., M. Saha, and K. Ehrmann, Mechanical properties of contact lens materials. Eye & Contact Lens, 2018. 44: p. S148-S156.
  • [8] Oliver, W.C. and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 1992. 7(06): p. 1564- 1583.
  • [9] Pharr, G.M., Measurement of mechanical properties by ultra-low load indentation. Materials Science and Engineering: A, 1998. 253(1): p. 151-159.
  • [10] Qian, L., et al., Comparison of nano-indentation hardness to microhardness. Surface and Coatings Technology, 2005. 195(2): p. 264-271.
  • [11] Tuck, J.R., et al., Indentation hardness evaluation of cathodic arc deposited thin hard coatings. Surface and Coatings Technology, 2001. 139(1): p. 63-74.
  • [12] Luna, M., D.F. Ogletree, and M. Salmeron, A study of the topographic and electrical properties of selfassembled islands of alkylsilanes on mica using a combination of non-contact force microscopy techniques. Nanotechnology, 2006. 17(7): p. S178-84.
  • [13] Calabri, L., et al., AFM nanoindentation: tip shape and tip radius of curvature effect on the hardness measurement. Journal of Physics: Condensed Matter, 2008. 20(47): p. 474208.
  • [14] Vahabi, S., B. Nazemi Salman, and A. Javanmard, Atomic force microscopy application in biological research: a review study. Iranian journal of medical sciences, 2013. 38(2): p. 76-83.
  • [15] Ding, Y., G.-K. Xu, and G.-F. Wang, On the determination of elastic moduli of cells by AFM based indentation. Scientific Reports, 2017. 7: p. 45575.
  • [16] Stark, R.W., et al., Determination of elastic properties of single aerogel powder particles with the AFM. Ultramicroscopy, 1998. 75(3): p. 161-169.
  • [17] Roa, J.J., et al., Calculation of Young's modulus value by means of AFM. Recent Patents on Nanotechnology, 2011. 5(1): p. 27-36.
  • [18] Ferencz, R., et al., AFM nanoindentation to determine Young’s modulus for different EPDM elastomers. Polymer Testing, 2012. 31(3): p. 425-432.
  • [19] Caglayan, M.O., Nanomechanical characterization of flowable dental restorative nanocomposite resins using AFM. Polymer-Plastics Technology and Engineering, 2017. 56(16): p. 1813-1821.
  • [20] Caglayan, M.O., Atomic force microscopy as a characterization tool for contact lenses: Indentation tests and grain analysis. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014. 63(13): p. 680-684.
  • [21] Küçükoflaz, M., B. Saraçoğlu Kaya, and M.O. Caglayan, Determination of mechanical properties of polymeric microspheres used in controlled drug delivery systems by nanoindentation. Polymer-Plastics Technology and Materials, 2019. 58(7): p. 765-775.
  • [22] Jain, P.K., et al., Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in Biological Imaging and Biomedicine. The Journal of Physical Chemistry B, 2006. 110(14): p. 7238-7248.