KALÇA PROTEZLERİNDE OLUŞAN AŞINMANIN FEMUR KAS-İSKELET SİSTEMİ TABANLI SONLU ELEMANLAR ANALİZİ İLE İNCELENMESİ

Kalça protez kullanımı artan ortalama yaşam süresine ve nüfusa bağlı olarak gün geçtikçe artmaktadır. Üstün klinik başarıya rağmen aşınmaya bağlı olarak kalça protezlerinin gevşemesi ve ağrılı süreçlerin tekrar başlaması beklenen bir durum haline gelmiştir. Bunların engellenebilmesi için yapılan çalışmalar in vitro ortamlarda test edilerek sağlık alanında gelişmeler kaydetmektdir. Bu makalede de kalça protezlerinde ki in vitro test koşullarını daha kısa sürelerde sağlamak amacıyla kas-iskelet simülasyon tanımlanan Sonlu Elemanlar Yöntemi ile analizler gerçekleştirildi. Bunun için erişkin hastaya ait femur kemiği, bu kemiğe uygun kalça protezi ve 172 adet kas birim yük değeri kullanıldı. Yapılan analizler sonucunda kas sistemlerinin aşınma derinliğini ve gerilmeleri azalttığı belirlendi. 

Investigation of hip prosthesis wear with finite element analysis based on femur musculoskeletal system

The use of hip prostheses increases with increasing average life expectancy and population. In spite of the superior clinical success, loosening of the hip prostheses and the resumption of painful processes due to abrasion have become expected. In order to prevent this, the studies carried out in vitro have been tested in the field of health. In this article, in order to provide the in vitro test conditions in hip prostheses in shorter times, analyses were performed by Finite Element Method which defined musculoskeletal simulation. For this purpose, femoral bone of adult patient, hip prosthesis and 172 muscle unit load value were used. As a result of the analyzes, it was determined that the muscle systems reduce the wear depth and stresses.

___

  • [1] Bitar, D., & Parvizi, J. (2015). Biological response to prosthetic debris. World journal of orthopedics, 6(2), 172.
  • [2] Chen, F. M., & Liu, X. (2016). Advancing biomaterials of human origin for tissue engineering. Progress in polymer science, 53, 86-168.
  • [3] Heller, M. O., Bergmann, G., Kassi, J. P., Claes, L., Haas, N. P., & Duda, G. N. (2005). Determination of muscle loading at the hip joint for use in pre-clinical testing. Journal of biomechanics, 38(5), 1155-1163.
  • [4] Hussenbocus S., Kosuge D., Solomon L. B., Howie D. W., & Oskouei R. H. (2015). Head-neck taper corrosion in hip arthroplasty. BioMed research international, 2015:758123.
  • [5] Ramos A., Relvas C., Completo A., & Simões J. A. (2013). The formation of cracks at cement interfaces of different femoral stem designs. European Orthopaedics and Traumatology, 4(4), 205-215.
  • [6] Kara, F., Aslantaş, K., & Cicek, A. (2016). Prediction of cutting temperature in orthogonal machining of AISI 316L using artificial neural network. Applied Soft Computing, 38, 64-74.
  • [7] Colic, K., Sedmak, A., Grbovic, A., Tatic, U., Sedmak, S., & Djordjevic, B. (2016). Finite element modeling of hip implant static loading. Procedia Engineering, 149, 257-262.
  • [8] Arabnejad, S., Johnston, B., Tanzer, M., Pasini, & D. (2017). Fully porous 3D printed titanium femoral stem to reduce stress‐shielding following total hip arthroplasty. Journal of Orthopaedic Research, 35(8), 1774-1783.
  • [9] Brand, S., Bauer, M., Petri, M., Schrader, J., Maier, H. J., Krettek, C., & Hassel, T. (2016). Impact of intraprosthetic drilling on the strength of the femoral stem in periprosthetic fractures: A finite element investigation. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 230(7), 675-681.
  • [10] Saravana, K. G., & George S. P. (2017). Optimization of custom cementless stem using finite element analysis and elastic modulus distribution for reducing stress-shielding effect. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 231(2), 149-159.
  • [11] Ashkanfar, A., Langton, D. J., & Joyce, T. J. (2017). Does a micro-grooved trunnion stem surface finish improve fixation and reduce fretting wear at the taper junction of total hip replacements? A finite element evaluation. Journal of Biomechanics, 63, 47-54.
  • [12] Westerman, A. P., Moor, A. R., Stone, M. H., & Stewart, T. D. (2018). Hip stem fatigue: The implications of increasing patient mass. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 232(5), 520-530.
  • [13] Korhonen, R. K., Koistinen, A., Konttinen, Y. T, Santavirta, S. S., & Lappalainen, R. (2005). The effect of geometry and abduction angle on the stresses in cemented UHMWPE acetabular cups–finite element simulations and experimental tests. Biomedical engineering online, 4(1), 32.
  • [14] Saikko, V. (2019). Effect of wear, acetabular cup inclination angle, load and serum degradation on the friction of a large diameter metal-on-metal hip prosthesis. Clinical Biomechanics.
  • [15] Baxmann, M., Pfaff, A. M., Schilling, C., Grupp, T. M., & Morlock, M. M. (2017). Biomechanical Evaluation of the Fatigue Performance, the Taper Corrosion and the Metal Ion Release of a Dual Taper Hip Prosthesis under Physiological Environmental Conditions. Biotribology, 12, 1-7.
  • [16] Windrich, M., Grimmer, M., Christ, O., Rinderknecht, S., & Beckerle, P. (2016). Active lower limb prosthetics: a systematic review of design issues and solutions. Biomedical engineering online, 15(3), 140.
  • [17] ISO 14242-1: 2014, Implants for surgery - Wear of total hip-joint prostheses - Part 1: Loading and displacement parameters for wear-testing machines and corresponding environmental conditions for test, 2012.
  • [18] Aherwar, A., Singh, A. K., & Patnaik, A., (2015). Current and future biocompatibility aspects of biomaterials for hip prosthesis. AIMS Bioengineering, 3(1), 23-43.
  • [19] Sobotta, J., 2006. Atlas de anatomia humana (Vol. 2). Ed. Médica Panamericana.