Lineer ve Lineer Olmayan Flor Katkılanmış Lityum Topaklarının Optik Özelliklerinin İncelenmesi

Bir flor atom katkılanmış lityum topaklarının lineer (LinF, n=1-8) ve lineer olmayan (LinF, n=2-8)  kararlı yapılarının optik özellikleri, hibrit-Yoğunluk Fonksiyonel Teorisi (h-DFT) yardımıyla kuramsal olarak araştırılmıştır. Lineer LinF (n=1-8) topaklarının en kararlı izomerik yapıları Becke 3 Lee-Yang-Parr (B3LYP) fonksiyoneli ve Los Alamos National Laboratory -2 double zeta (Lanl2dz) temel seti kullanılarak elde edilmiştir. Literatürde rapor edilen lineer olmayan LinF (n=2-8) topaklarının taban durumu geometrik yapıları h-DFT / B3LYP / Lanl2dz teori seviyesinde kararlılıkları test edilmiştir. Elde edilen lineer ve lineer olmayan topakların global minimum yapılarına ait dipol moment (µ), statik ortalama polarizebilite (<α>), anizotropik polarizebilite (∆α) ve birinci dereceden statik toplam moleküler hiperpolarizebilite (β0) değerleri yine aynı metot ve temel set ile incelendi. Bu çalışma, yeni lineer ve lineer olmayan optik malzemelerin veya uygulamaların tasarımında çalışan deneysel araştırmacılara faydalı optik bilgiler verebilir.

The Investigation of Optical Properties of Linear and Non-linear Fluorine-Doped Lithium Clusters

The optical features of linear (LinF, n = 1-8) and non-linear (LinF, n = 2-8) stable structures of fluorine-doped lithium clusters were theoretically investigated with the help of hybrid-Density Functional Theory (h-DFT). The most stable isomeric structures of linear LinF (n = 1-8) clusters were obtained by using the Becke 3 Lee-Yang-Parr (B3LYP) functional and the Los Alamos National Laboratory -2 double zeta (Lanl2dz) basis set. The stabilities of ground state geometric structures of non-linear LinF (n = 2-8) clusters reported in the literature were tested  at h-DFT / B3LYP / Lanl2dz level of theory. The dipole moment (µ), static mean polarizability (<α>), anisotropic polarizability (∆α) and molecular first order static total hyperpolarizability (β0) values of the obtained global minimum structures of linear and non-linear clusters were investigated with the same method and basis set. This study may give beneficial optical knowledge to the experimental researchers working in the design of new linear and non-linear optical materials or optical applications.

___

Linden D. (1995). Handbook of Batteries, 2nd ed., McGraw-Hill, New York.

Şentürk, Ş. (2011). A Density Functional Study of LinCl (n=1–7) Clusters. Z. Naturforsch. A, 66, 372-376.

Şentürk Ş., Ünal, A., & Kalfa, O.M. (2013). Density functional study of bromine doped lithium clusters. Comput. Theor. Chem., 1023, 46-50.

Srivastava, A.K., & Misra, N. (2015). Nonlinear optical behavior of LinF (n=2-5) superalkali clusters. J. Mol. Model., 21, 305.

Milovanović, M., Veličković, S., Veljković, F., & Jerosimić, S. (2017). Structure and stability of small lithium-chloride LinClm(0,1+) (n≥m, n= 1–6, m= 1–3) clusters. Phys. Chem. Chem. Phys., 19, 30481-30497.

Srivastava, A.K., & Misra, N. (2016). Remarkable NLO responses of hyperalkalized species: the size effect and atomic number dependence. New J. Chem., 40, 5467-5472.

Velickovic, S.R., Koteski, V.J., Belosevic Cavor, J.N., Djordjevic, V.R., Cveticanin, J.M., Djustebek, J.B., Veljkovic, M.V., & Neskovic, O.M. (2007). Experimental and theoretical investigation of new hypervalent molecules LinF (n=2-4). Chem. Phys. Lett., 448, 151-155.

Ünal, A., & Kotan, B. (2018). A DFT based study of geometries, stabilities and electronic properties of LinF (n=1-8) clusters. Main Group Chem., 17, 267-272.

Dustebek, J., Velickovic, S.R., Veljkovic, F.M., & Veljkovic, M.V. (2012). Production of heterogeneous superalkali clusters LinF(n=2-6) by Knudsen cell Mass Spectrometry. Dig. J. Nanomater Bios., 7, 1365-1372.

Lanaro, G., & Patey, G.N. (2017). Crystal structures of model lithium halides in bulk phase and in clusters. J. Chem. Phys., 146, 154501.

Moreira, N.L., Brito, B.G.A., Rabelo, J.N.T., & Cândido, L. (2016). Quantum Monte Carlo study of the energetics of small hydrogenated and fluoride lithium clusters. J. Comput. Chem., 37, 1534-1536.

Milonavić, M.Z., & Jerosimić, S.V. (2014). Theoretical investigation of geometry and stability of small lithium-iodide LinI (n=2-6) clusters. Int. J. Quantum Chem., 114, 192-208.

Gutsev, G.L., & Boldryev, A.I. (1981). DVM-Xα calculations on the ionization potentials of MXk+1− complex anions and the electron affinities of MXk+1 “superhalogens”. Chem. Phys., 56, 277-283.

Gutsev, G.L., & Boldryev, A.I. (1982). DVM Xα calculations on the electronic structure of “superalkali” cations, Chem. Phys. Lett., 92, 262-266.

Rehm, E., Boldryev, A.I ., & Schleyer, P.v.R.(1992). Ab initio study of superalkalis. First ionization potentials and thermodynamic stability. Inorg. Chem. 31, 4834-4842.

Li, Y., & Wu, D. (2010). Theoretical study on static first hyperpolarizabilities of hypervalent compounds FnLin+1 (n = 1–3). Gaodeng Xuexiao Huaxue Xuebao, 31, 1811-1814.

Frisch, M.J., et al., Gaussian 09 Revision A.1, Gaussian Inc., Wallingford, CT, Gaussian, Inc. 2009.

Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 98, 5648-5652.

Lee, C., Yang, W., & Parr, R.G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37, 785-789.

Kotan, B. (2018). Flor katkılı lityum topaklarının en düşük enerjili yapılarının araştırılması. Yüksek Lisans Tezi, Bilecik Şeyh Edebali Üniversitesi, Fen Bilimleri Enstitüsü, Bilecik.

Cohen, H.D., & Roothaan, C.C. (1965). Electric Dipole Polarizability of Atoms by the Hartree—Fock Method. I. Theory for Closed‐Shell Systems. J. Chem. Phys., 43, S34-S39.

Pearson, R. G. (1963). Hard and Soft Acids and Bases. J. Am. Chem. Soc., 85, 3533-3539.

Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2014
  • Yayıncı: BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ