Kompleks Koaservasyon Yöntemi ile Gül (Rosa damascena Miller) Yağının Jelatin ve Aljinat ileMikroenkapsülasyonu

Mikroenkapsülasyon, günümüzde gıda, ilaç, tarım, tekstil, kozmetik, biyomedikal gibi endüstrilerde aktif bileşenstabilitesinin ve biyoaktif özelliklerinin korunması için sıklıkla başvurulan, aktif maddelerin etrafını bir ya dabirden çok kaplama maddesi ile sarılmasını sağlayan bir teknolojidir. Ülkemiz için ticari öneme sahip olan ve anti kanser, antioksidan, antiseptik, hipolipidemik, antidiyabetik, antimikrobiyal ve antibakteriyel özellikleri nedeniylegeniş uygulama alanı bulabilecek gül yağı, oda sıcaklığında hidrokarbon grubu bileşen oranının artmasıylakatılaşmaya başlamakta ve karakteristik özelliklerini kaybetmektedir. Bu nedenle yapılan bu çalışma ile, duvarmateryali olarak jelatin ve aljinat kullanılarak, kompleks koaservasyon metodu ile gül yağının mikroenkapsüleedilmesi amaçlanmıştır. Sentez sırasında farklı oranlarda jelatin/aljinat içeren mikrokapsüller (6J/A/5GY,8J/A/5GY, 10J/A/5GY, 12J/A/5GY) elde edilmiş olup, jelatin/aljinat oranının mikrokapsülleme verimi, % yüzeyyağı, % toplam yağ miktarı ve enkapsülasyon etkinliği üzerine etkileri araştırılmıştır. 12J/A/5GY mikrokapsüllerinin %85,5 mikrokapsülleme verimi, 50,1 % toplam yağ, % 88,0 enkapsülasyon etkinliği ile enyüksek özelliklere sahip olduğu gözlemlenmiştir. Mikrokapsüllerin morfolojileri ve oluşumları taramalı elektronmikroskobu (SEM) ile incelenmiş olup, kaplama materyal oranının mikrokapsüllerin oluşumlarında önemli etkiyesahip olduğu tespit edilmiştir. Ayrıca, mikrokapsüllerin termal kararlılıkları diferansiyel termal analiz vetermogravimetrik (DTA-TG) analiz ile incelenmiş olup, mikrokapsüllerin yüksek sıcaklıklarda bile termalkararlılıklarını koruduğunu gözlemlenmiştir. Bu çalışma ile elde edilen sonuçlara göre gül yağı içerenmikrokapsüllerin; parfümeri, kozmetik, sağlık ve tekstil sektöründe önemli kullanım alanları bulabileceğidüşünülmektedir.

Microencapsulation of Rose (Rosa damascene Miller) Oil with Gelatinand Alginate by Complex Coacervation

Microencapsulation is a technology that is frequently used in industries, such as food, medicine, agriculture, textile,cosmetics, biomedical to protect the stability and bioactive properties of active ingredients, and it allows the activeingredients to be surrounded by one or more coating materials. Rose oil, which is commercially important for ourcountry and can find wide application area due to its anti-cancer, antioxidant, antiseptic, hypolipidemic,antidiabetic, antimicrobial, and antibacterial properties, begins to solidify at room temperature and loses itscharacteristic properties. Therefore, this study aims to microencapsulate rose oil using gelatin and alginate as wallmaterials by complex coacervation method. Microcapsules containing different ratios of gelatin/alginate(6J/A/5GY, 8J/A/5GY, 10J/A/5GY, 12J/A/5GY) were obtained during the synthesis, and the effect ofgelatin/alginate ratio on the microencapsulation efficiency, % surface oil, % total oil amount and encapsulationefficiency were investigated. It was observed that 12J/A/5GY microcapsules had the highest properties with 85.5% of microencapsulation efficiency, 50.1 % of total oil, and 88.0 % of encapsulation efficiency. The morphologyand formation of microcapsules were examined by scanning electron microscopy (SEM), and it was determinedthat the coating material ratio had a significant effect on the formation of microcapsules. Besides, the thermalstability of microcapsules was examined by differential thermal analysis and thermogravimetric (DTA-TG)analysis, and it was observed that microcapsules preserved their thermal stability even at high temperatures.According to the results obtained with this study, it is thought that the microcapsules containing rose oil can findimportant usage areas in perfumery, cosmetics, health, and textile sectors.

___

  • [1] Umana, M., Turchiuli, C., Rossello, C. & Simal, S. (2021). Addition of a mushroom by-product in oil-inwater emulsions for the microencapsulation of sunflower oil by spray drying. Food Chemistry, 343, 128429.
  • [2] Charles, A. L., Abdillah, A. A., Saraswati, Y. R., Sridhar, K., Balderamos, C., Masithah, E. D. & Alamsjah, M. A. (2021). Characterization of freeze-dried microencapsulation tuna fish oil with arrowroot starch and maltodextrin. Food Hydrocolloids, 112, 106281.
  • [3] Heck, R. T., Lorenzo, J. M., Dos Santos, B. A., Cichoski, A. J., de Menezes, C. R. & Campagnol, P. C. B. (2021). Microencapsulation of healthier oils: an efficient strategy to improve the lipid profile of meat products. Current Opinion in Food Science, 40, 6-12.
  • [4] Mehran, M., Masoum, S. & Memarzadeh, M. (2020). Microencapsulation of Mentha spicata essential oil by spray drying: Optimization, characterization, release kinetics of essential oil from microcapsules in food models. Industrial Crops and Products, 154, 112694.
  • [5] Santos, M. B., de Carvalho, C. W. P. & Garcia-Rojas, E. E. (2021). Microencapsulation of vitamin D3 by complex coacervation using carboxymethyl tara gum (Caesalpinia spinosa) and gelatin A. Food Chemistry, 343, 128529.
  • [6] Budincic, J. M., Petrovic, L., Dekic, L., Fraj, J., Bucko, S., Katona, J. & Spasojevic, L. (2021). Study of vitamin E microencapsulation and controlled release from chitosan/sodium lauryl ether sulfate microcapsules. Carbohydrate Polymers, 251, 116988.
  • [7] Dhakal, S. P. & He, J. (2020). Microencapsulation of vitamins in food applications to prevent losses in processing and storage: a review. Food Research International, 137, 109326.
  • [8] Ribeiro, J. S. & Veloso, C. M. (2021). Microencapsulation of natural dyes with biopolymers for application in food: A review. Food Hydrocolloids, 112, 106374.
  • [9] Polekkad, A., Franklin, M. E. E., Pushpadass, H. A., Battula, S. N., Rao, S. B. N. & Pal, D. T. (2021). Microencapsulation of zinc by spray-drying: Characterisation and fortification. Powder Technology, 381, 1- 16.
  • [10] Martins, I. M., Barreiro, M. F., Coelho, M. & Rodrigues, A. E. (2014). Microencapsulation of essential oils with biodegradable polymeric carriers for cosmetic applications. Chemical Engineering Journal, 245, 191- 200.
  • [11] Xiao, Z., Kang, Y., Hou, W., Niu, Y. & Kou, X. (2019). Microcapsules based on octenyl succinic anhydride (OSA)-modified starch and maltodextrins changing the composition and release property of rose essential oil. International Journal of Biological Macromolecules, 137, 132-138.
  • [12] Özçelik, H. & Orhan, H. (2014). Türkiye'nin Gülleri. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 9(1), 43-55.
  • [13] Örmeci Kart, M. Ç., İkiz, M. & Demircan, V. (2012). Türkiye’de Yağ Gülü (Rosa damascena) Üretimi ve Ticaretinin Gelişimi. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 7(1), 124-134.
  • [14] Uysal, M., Yılmaz Doğru, H., Sapmaz, E., Taş, U., Çakmak, B., Özsoy, A. Z., Şahin, F., Ayan, S. & Esen, M. (2016). Investigating the effect of rose essential oil in patients with primary dysmenorrhea. Complementary Therapies in Clinical Practice, 24, 45-49.
  • [15] Yi, F., Sun, J., Bao, X., Ma, B. & Sun, M. (2019). Influence of molecular distillation on antioxidant and antimicrobial activities of rose essential oils. LWT, 102, 310-316.
  • [16] Baydar, H., Kazaz, S., Erbaş, S. & Örücü, Ö. K. (2008). Soğukta muhafaza ve kurutmanın yağ gülü çiçeklerinin uçucu yağ içeriği ve bileşimine etkileri. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 3(1), 42-48.
  • [17] Kujur, A., Kiran, S., Dubey, N. K. & Prakash, B. (2017). Microencapsulation of Gaultheria procumbens essential oil using chitosan-cinnamic acid microgel: Improvement of antimicrobial activity, stability and mode of action. LWT, 86, 132-138.
  • [18] Kavoosi, G., Derakhshan, M., Salehi, M. & Rahmati, L. (2018). Microencapsulation of zataria essential oil in agar, alginate and carrageenan. Innovative Food Science & Emerging Technologies, 45, 418-425.
  • [19] Karrar, E., Mahdi, A. A., Sheth, S., Ahmed, I. A. M., Manzoor, M. F., Wei, W. & Wang, X. (2021). Effect of maltodextrin combination with gum arabic and whey protein isolate on the microencapsulation of gurum seed oil using a spray-drying method. International Journal of Biological Macromolecules, 171, 208-216.
  • [20] Alkhatib, H., Mohamed, F., Akkawi, M. E., Alfatama, M., Chatterjee, B. & Doolaanea, A. A. (2020). Microencapsulation of black seed oil in alginate beads for stability and taste masking. Journal of Drug Delivery Science and Technology, 60, 102030.
  • [21] Rungwasantisuk, A. & Raibhu, S. (2020). Application of encapsulating lavender essential oil in gelatin/gumarabic complex coacervate and varnish screen-printing in making fragrant gift-wrapping paper. Progress in Organic Coatings, 149, 105924.
  • [22] Sutaphanit, P. & Chitprasert, P. (2014). Optimisation of microencapsulation of holy basil essential oil in gelatin by response surface methodology. Food Chemistry, 150, 313-320.
  • [23] Peng, C., Zhao, S. Q., Zhang, J., Huang, G. Y., Chen, L. Y. & Zhao, F. Y. (2014). Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapis alba) seed essential oil by complex coacervation. Food Chemistry, 165, 560-568.
  • [24] Muhoza, B., Xia, S. & Zhang, X. (2019). Gelatin and high methyl pectin coacervates crosslinked with tannic acid: The characterization, rheological properties, and application for peppermint oil microencapsulation. Food Hydrocolloids, 97, 105174.
  • [25] Guo, J., Li, P., Kong, L. & Xu, B. (2020). Microencapsulation of curcumin by spray drying and freeze drying. LWT, 132, 109892.
  • [26] Sturm, L., Crnivec, I. G. O., Istenic, K., Ota, A., Megusar, P., Slukan, A., Humar, M., Levic, S., Nedovic, V., Kopinc, R., Dezelak, M., Gonzales, A. P. & Ulrih, N. P. (2019). Encapsulation of non-dewaxed propolis by freeze-drying and spray-drying using gum Arabic, maltodextrin and inulin as coating materials. Food and Bioproducts Processing, 116, 196-211.
  • [27] Freitas, S., Merkle, H. P. & Gander, B. (2005). Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. Journal of Controlled Release, 102(2), 313-332.
  • 28] da Costa Neto, J. J. G., Gomes, T. L. M., Justo, T. F., Pereira, K. S., Amaral, P. F. F., Leao, M. H. M. R., & Sant'Ana, G. C. F. (2019). Microencapsulation of tiger nut milk by lyophilization: Morphological characteristics, shelf life and microbiological stability. Food Chemistry, 284, 133-139.
  • [29] Di Giorgio, L., Salgado, P. R. & Mauri, A. N. (2019). Encapsulation of fish oil in soybean protein particles by emulsification and spray drying. Food Hydrocolloids, 87, 891-901.
  • [30] Timilsena, Y. P., Akanbi, T. O., Khalid, N., Adhikari, B. & Barrow, C. J. (2019). Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules, 121, 1276-1286.
  • [31] Schmitt, C. & Turgeon, S. L. (2011). Protein/polysaccharide complexes and coacervates in food systems. Advances in Colloid and Interface Science, 167(1-2), 63-70.
  • [32] Lemetter, C. Y. G., Meeuse, F. M. & Zuidam, N. J. (2009). Control of the morphology and the size of complex coacervate microcapsules during scale-up. AIChE Journal, 55(6), 1487-1496.
  • [33] Shinde, U. A. & Nagarsenker, M. S. (2009). Characterization of gelatin-sodium alginate complex coacervation system. Indian Journal of Pharmaceutical Sciences, 71(3), 313.
  • [34] Devi, N., Hazarika, D., Deka, C. & Kakati, D. K. (2012). Study of complex coacervation of gelatin A and sodium alginate for microencapsulation of olive oil. Journal of Macromolecular Science, Part A, 49(11), 936-945.
  • [35] de Matos, E. F., Scopel, B. S. & Dettmer, A. (2018). Citronella essential oil microencapsulation by complex coacervation with leather waste gelatin and sodium alginate. Journal of Environmental Chemical Engineering, 6(2), 1989-1994.
  • [36] Leclercq, S., Harlander, K. R. & Reineccius, G. A. (2009). Formation and characterization of microcapsules by complex coacervation with liquid or solid aroma cores. Flavour and Fragrance Journal, 24(1), 17-24.
  • [37] Timilsena, Y. P., Vongsvivut, J., Tobin, M. J., Adhikari, R., Barrow, C. & Adhikari, B. (2019). Investigation of oil distribution in spray-dried chia seed oil microcapsules using synchrotron-FTIR microspectroscopy. Food Chemistry, 275, 457-466.
  • [38] Vaziri, A. S., Alemzadeh, I., Vossoughi, M. & Khorasani, A. C. (2018). Co-microencapsulation of Lactobacillus plantarum and DHA fatty acid in alginate-pectin-gelatinbiocomposites. Carbohydrate Polymers, 199, 266-275.
  • [39] de Araujo, J. S. F., de Souza, E. L., Oliveira, J. R., Gomes, A. C. A., Kotzebue, L. R. V., da Silva Agostini, D. L., de Oliveira, D. L. V., Mazzetto, S.E., de Silva, A. L. & Cavalcanti, M. T. (2020). Microencapsulation of sweet orange essential oil (Citrus aurantium var. dulcis) by liophylization using maltodextrin and maltodextrin/gelatin mixtures: Preparation, characterization, antimicrobial and antioxidant activities. International Journal of Biological Macromolecules, 143, 991-999.
  • [40] Kalaycı, Ş. (2010). SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri. Asil Yayın Dağıtım, Ankara.
  • [41] Dima, C., Patrascu, L., Cantaragiu, A., Alexe, P. & Dima, Ş. (2016). The kinetics of the swelling process and the release mechanisms of Coriandrum sativum L. essential oil from chitosan/alginate/inulin microcapsules. Food Chemistry, 195, 39-48.
  • [42] Jannasari, N., Fathi, M., Moshtaghian, S. J. & Abbaspourrad, A. (2019). Microencapsulation of vitamin D using gelatin and cress seed mucilage: Production, characterization and in vivo study. International Journal of Biological Macromolecules, 129, 972-979.
  • [43] Karaaslan, M., Şengün, F., Cansu, Ü., Başyiğit, B., Sağlam, H. & Karaaslan, A. (2021). Gum arabic/maltodextrin microencapsulation confers peroxidation stability and antimicrobial ability to pepper seed oil. Food Chemistry, 337, 127748.
  • [44] Özyurt, G., Durmuş, M., Uçar, Y. & Özoğul, Y. (2020). The potential use of recovered fish protein as wall material for microencapsulated anchovy oil. LWT, 129, 109554.