Çinko Üretimi Atık Kekinin Fosfat Adsorpsiyon Özelliklerinin İncelenmesi

Bu çalışmada Kayseri’de bulunan Çinkur işletmelerinde, çinko üretimi sırasında meydana gelen kurşunlu kek olarak adlandırılan, yüksek oranda kurşunun yanında çinko ve demir içeren artığın sulu ortamdan fosfat uzaklaştırılma şartları araştırılmıştır. Bu amaçla bu kekle sulu ortamdan fosfat giderilmesi üzerine, kek dozu, süre, ortam pH’sı ve sıcaklığı ve fosfat konsantrasyonu gibi parametrelerin etkileri incelenmiştir. Elde edilen sonuçlar kullanılarak adsorpsiyon izotermleri elde edilmiş ve bazı termodinamik büyüklükler hesaplanmıştır. Yapılan deneylerde fosfat giderme veriminin önemli ölçüde pH’ya ve kurşun keki dozuna bağlı olduğu bulunmuştur. Ayrıca fosfat uzaklaştırılmasının Langmuir ve Freundlich izotermine uyduğu, 120 dakikalık bir sürenin sonunda dengenin kurulduğu gözlenmiştir. Orijinal pH’sı 7.69 olan 100 mg-P/L konsantrasyonundaki ortofosfat çözeltisinin, 30 g/L dozunda kurşun kekiyle karıştırılıp 120 dakika temas ettirilmesiyle çözeltideki fosfatın yaklaşık %75’i giderilebilmektedir.

Investigation of Phosphate Adsorption Properties of Zinc Production Residue Cakes

In this study, the conditions for removing phosphate from the aqueous environment of the residue containing zinc and iron in addition to lead, which is called as lead cake and formed during zinc production in çinkur plants in Kayseri was investigated. For this purpose, the effects of parameters such as cake dose, time, and environment pH and temperature and phosphate concentration on the removal of phosphate from aqueous environment with this cake were investigated. Using the obtained results, adsorption isotherms were obtained and some thermodynamic quantities were calculated. In the experiments, it was found that the phosphate removal efficiency is highly dependent on the pH and the lead cake dose. In addition, it was observed that phosphate removal complied with the Langmuir and Freundlich isotherm, and the equilibrium was established at the end of a period of 120 minutes. Approximately 75% of the phosphate in the solution can be removed by mixing the orthophosphate solution with a concentration of 100 mg-P /L with an original pH of 7.69 with lead cake at a dose of 30 g /L and contacting it for 120 minutes.

___

  • [1] Kuroki, V., Bosco, G. E., Fadini, P. S., Mozeto, A. A., Cestari, A. R. & Carvalho, W. A. (2014). Use of a La (III)-modified bentonite for effective phosphate removal from aqueous media. Journal of hazardous materials, 274, 124-131.
  • [2] Diao, J., Shao, L., Liu, D., Qiao, Y., Tan, W., Wu, L. & Xie, B. (2018). Removal of phosphorus from leach liquor of steel slag: Adsorption dephosphorization with activated alumina. JOM, 70(10), 2027-2032.
  • [3] Xiong, J., He, Z., Mahmood, Q., Liu, D., Yang, X. & Islam, E. (2008). Phosphate removal from solution using steel slag through magnetic separation. Journal of hazardous materials, 152(1), 211-215.
  • [4] Kondalkar, M., Fegade, U., Attarde, S. & Ingle, S. (2019). Phosphate removal, mechanism, and adsorption properties of Fe-Mn-Zn oxide trimetal alloy nanocomposite fabricated via co-precipitation method. Separation Science and Technology, 54(16), 2682-2694.
  • [5] Fan, R., Chen, C. L., Lin, J. Y., Tzeng, J. H., Huang, C. P., Dong, C. & Huang, C. P. (2019). Adsorption characteristics of ammonium ion onto hydrous biochars in dilute aqueous solutions. Bioresource technology, 272, 465-472.
  • [6] Jang, J. & Lee, D. S. (2019). Effective phosphorus removal using chitosan/Ca-organically modified montmorillonite beads in batch and fixed-bed column studies. Journal of hazardous materials, 375, 9-18.
  • [7] Yoshida, H. & Galinada, W. A. (2002). Equilibria for adsorption of phosphates on OH‐ type strongly basic ion exchanger. AIChE Journal, 48(10), 2193-2202.
  • [8] Altundoğan, H. S. & Tümen, F. (2002). Removal of phosphates from aqueous solutions by using bauxite. I: Effect of pH on the adsorption of various phosphates. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 77(1), 77-85.
  • [9] Altundoǧan, H. S. & Tümen, F. (2003). Removal of phosphates from aqueous solutions by using bauxite II: the activation study. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 78(7), 824-833.
  • [10] Li, Y., Liu, C., Luan, Z., Peng, X., Zhu, C., Chen, Z. & Jia, Z. (2006). Phosphate removal from aqueous solutions using raw and activated red mud and fly ash. Journal of hazardous materials, 137(1), 374-383.
  • [11] Liu, Y., Sheng, X., Dong, Y. & Ma, Y. (2012). Removal of high-concentration phosphate by calcite: effect of sulfate and pH. Desalination, 289, 66-71.
  • [12] Karageorgiou, K., Paschalis, M. & Anastassakis, G. N. (2007). Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent. Journal of Hazardous Materials, 139(3), 447-452.
  • [13] Li, M., Liu, J., Xu, Y. & Qian, G. (2016). Phosphate adsorption on metal oxides and metal hydroxides: A comparative review. Environmental Reviews, 24(3), 319-332.
  • [14] Liu, H., Sun, X., Yin, C. & Hu, C. (2008). Removal of phosphate by mesoporous ZrO2. Journal of hazardous materials, 151(2-3), 616-622.
  • [15] Huang, W., Wang, S., Zhu, Z., Li, L., Yao, X., Rudolph, V. & Haghseresht, F. (2008). Phosphate removal from wastewater using red mud. Journal of hazardous materials, 158(1), 35-42.
  • [16] Yin, H., Yun, Y., Zhang, Y. & Fan, C. (2011). Phosphate removal from wastewaters by a naturally occurring, calcium-rich sepiolite. Journal of Hazardous Materials, 198, 362-369.
  • [17] Nguyen, T. A. H., Ngo, H. H., Guo, W. S., Zhang, J., Liang, S., Lee, D. J. & Bui, X. T. (2014). Modification of agricultural waste/by-products for enhanced phosphate removal and recovery: potential and obstacles. Bioresource technology, 169, 750-762.
  • [18] APHA-AWWA/WEF. (1998). Standard Methods for the Examination of Water and Wastewater, 20th Edition. American Public Health Association, Washington DC, USA.
  • [19] Arslanoğlu, H. (2021). Production of low-cost adsorbent with small particle size from calcium carbonate rich residue carbonatation cake and their high performance phosphate adsorption applications. Journal of Materials Research and Technology, 11, 428-447.
  • [20] Eren, M. Ş., Arslanoğlu, H. & Çiftçi, H. (2020). Production of microporous Cu-doped BTC (Cu-BTC) metalorganic framework composite materials, superior adsorbents for the removal of methylene blue (Basic Blue 9). Journal of Environmental Chemical Engineering, 8(5), 104247.
  • [21] Arslanoğlu, H., Kaya, S. & Tümen, F. (2020). Cr (VI) adsorption on low-cost activated carbon developed from grape marc-vinasse mixture. Particulate Science and Technology, 38(6), 768-781.
  • [22] Shahid, M. K., Kim, Y. & Choi, Y. G. (2019). Magnetite synthesis using iron oxide waste and its application for phosphate adsorption with column and batch reactors. Chemical Engineering Research and Design, 148, 169-179.
  • [23] Yaghoobi-Rahni, S., Rezaei, B. & Mirghaffari, N. (2017). Bentonite surface modification and characterization for high selective phosphate adsorption from aqueous media and its application for wastewater treatments. Journal of Water Reuse and Desalination, 7(2), 175-186.
  • [24] Yoon, S. Y., Lee, C. G., Park, J. A., Kim, J. H., Kim, S. B., Lee, S. H. & Choi, J. W. (2014). Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles. Chemical engineering journal, 236, 341-347.
  • [25] Trazzi, P. A., Leahy, J. J., Hayes, M. H. & Kwapinski, W. (2016). Adsorption and desorption of phosphate on biochars. Journal of environmental chemical engineering, 4(1), 37-46.
  • [26] Shahid, M. K., Kim, Y. & Choi, Y. G. (2019). Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale. Frontiers of Environmental Science & Engineering, 13(5), 1-12.
  • [27] Xue, Y., Hou, H. & Zhu, S. (2009). Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag. Journal of Hazardous Materials, 162(2-3), 973-980.