Bir Ters Ozmoz Tuzdan Arındırma Simülasyon Modeli Üzerinde Tuzdan Arındırma Modeli Parametrelerinin İncelenmesi
Temiz su ve enerji insanlığın en önemli ihtiyaçlarındandır. Artan nüfus ve tatlı su ihtiyacının karşılanması ihtiyacı, tuzdan arındırma işlemini populer bir konu haline getirmektedir. Ters ozmoz, tuzdan arındırma için en populer tekniklerden biridir. Ters ozmozun diğer tuzdan arındırma tekniklerine göre temel avantajları, daha düşük enerji tüketimi ve besleme suyunun tuzluluğuna karşı gürbüzlüğüdür. Ortam koşulları, tuzdan arındırma işleminin verimliliğini etkileyen temel parametrelerdendir. Öte yandan, bir ters ozmoz prensibi ile tuzdan arındırma yapacak olan tesisinin tasarım parametreleri de bu süreçte önemli bir rol oynamaktadır. Bu çalışmada hem ortam koşulları hem de tasarım parametrelerinin etkileri incelenmiştir. Çalışmanın katkıları, tek aşamalı ters osmoz prensibi ile tuzdan arındırma yapan tesis modelinin özgül güç tüketimi ve ilgili toplam güç gereksiniminin ortam koşulları ve tasarım parametreleri ile değişimini belirlemektir. Güç gereksinimleri için tasarım parametrelerinin ve ortam koşullarının etkileri sonuç kısmında verilmiştir. Her parametrenin ürün özelliklerine etkisini görebilmek için simülasyon çalışmaları sabit üretim hızında gerçekleştirilir. Sabit besleme suyu tuzluluğu için deniz suyu sıcaklığındaki artış, nihai ürünün tuzluluğunu artırırken güç tüketimini azaltır. Sonuçlar, tasarım parametrelerinin tasarlanacak sistemin boyutuna ve besleme suyunun tuzluluğuna göre optimize edilmesi gerektiğini göstermiştir. Ayrıca, Türkiye'de Marmara Bölgesi'ndeki bir nokta için bir örnek durum çalışması yapılmıştır.
Examination of Desalination Model Parameters on a Reverse Osmosis Desalination Simulation Model
The clean water and energy are both the most important needs of mankind. The increasing population and the necessity to meet the need for freshwater requirements make the desalination process a popular topic. The reverse osmosis is one of the most popular technique for desalination. The main advantages of the reverse osmosis over other desalination techniques are the lower energy consumption and the robustness to the salinity of feedwater. The ambient conditions are the key parameters affecting the efficiency of desalination process. On the other hand, the design parameters of a reverse osmosis desalination plant also play an important role in the process. In this paper, both ambient conditions and the design parameters are investigated. The contributions of the study are to determine variation the specific power consumption and related total power requirement of single stage reverse osmosis desalination plant model with the ambient conditions and design parameters. The effects of design parameters and ambient conditions for power requirements are given in the results section. The simulation studies are performed at constant production rate in order to see the effects of each parameter to product properties. The increase in seawater temperature for constant seawater salinity decreases the power consumption while increasing the salinity of final product. The results indicated that design parameters should be optimized according to the size of the designed system and salinity of feedwater. Also, a case study is performed for a point at Marmara Region, Turkey.
___
- [1] Mito, M., Ma, X., Albuflasa, H., & Davies, P. A. (2019). Reverse osmosis (RO) membrane desalination driven by wind and solar photovoltaic (PV) energy: State of the art and challenges for large-scale implementation. Renewable and Sustainable Energy Reviews, 112, 669-685.
- [2] Mansour, T. M., Ismail, T. M., Ramzy, K., & El-Salam, M. A. (2020). Energy recovery system in small reverse osmosis desalination plant: Experimental and theoretical investigations. Alexandria Engineering Journal, 59(5), 3741-3753.
- [3] Dixon, A., Butler, D., & Fewkes, A. (1999). Water saving potential of domestic water reuse systems using greywater and rainwater in combination. Water Science and Technology, 39(5), 25-32.
- [4] Batisha, A. F. (2015). Feasibility and sustainability of fog harvesting. Sustainability of Water Quality and Ecology, 6, 1-10.
- [5] Lin, S., Zhao, H., Zhu, L., He, T., Chen, S., Gao, C., & Zhang, L. (2021). Seawater desalination technology and engineering in China: A review. Desalination, 498, 114728.
- [6] Greenlee, F. L., Lawler. F. D., Freeman, B. D, Marrot, B., & Moulin, P. (2009). Reverse osmosis desalination: Water sources, technology, and today's challenges. Water Research, 43(9), 2317-2348.
- [7] Kalogirou, S. A. (2005). Seawater desalination using renewable energy sources. Progress in Energy and Combustion Science, 31(3), 242-281.
- [8] Clemente, D., Rosa-Santos, P., & Taveira-Pinto, F. (2021). On the potential synergies and applications of wave energy converters: A review. Renewable and Sustainable Energy Reviews, 135, 110162.
- [9] Nassrullaha, H., Anisa, S. F., Hashaikeha, R., & Hilal, N. (2020). Energy for desalination: A state-of-the-art review. Desalination, 491, 114569.
- [10] Amy, G., Ghaffour, N., Li, Z., Francis, L., Linares, R. V., Missimer, T., & Lattemann, S. (2017). Membrane- based seawater desalination: Present and future prospects. Desalination, 401, 16-21.
- [11] Borge-Diez, D., García-Moya, F. J., Cabrera-Santana, P., & Rosales-Asensio, E. (2020). Feasibility analysis of wind and solar powered desalination plants: An application to islands. Science of The Total Environment, 764, 142878.
- [12] Charrouf, O., Betka, A., Abdeddaim, S., & Ghamri, A. (2020). Artificial Neural Network power manager for hybrid PV-wind desalination system. Mathematics and Computers in Simulation, 167, 443-460.
- [13] Leijon, J., Salar, D., Engström, J., Leijon, M., & Boström, C. (2020). Variable renewable energy sources for powering reverse osmosis desalination, with a case study of wave powered desalination for Kilifi, Kenya. Desalination, 494, 114669.
- [14] Gambier, A., & Badreddin, E. (2009). Control of Small Reverse Osmosis Desalination Plants with Feed Water Bypass. 18th IEEE International Conference on Control Applications. 13-14 July, Saint Petersburg, 800-805.
- [15] Oh, H. J., Hwang, T. M., & Lee, S. (2009). A simplified simulation model of RO systems for seawater desalination. Desalination, 238, 128–139.
- [16] MATLAB version 9a. (2009). Massachusetts: The MathWorks Inc 3 Apple Hill Drive.
- [17] Nafey, A. S., & Sharaf, M. A. (2010). Combined solar organic Rankine cycle with reverse osmosis desalination process: Energy, exergy, and cost evaluations. Renewable Energy, 35, 2571-2590.
- [18] Sassi, K. M., & Mujtaba, I. M. (2012). Effective design of reverse osmosis-based desalination process considering wide range of salinity and seawater temperature. Desalination, 306, 8-16.
- [19] Altaee, A. (2013). Theoretical study on feed water designs to reverse osmosis pressure vessel. Desalination, 326, 1-9.
- [20] Koutsou, C. P., Kritikos, E., Karabelas, A. J., & Kostoglou, M. (2020). Analysis of temperature effects on the specific energy consumption in reverse osmosis desalination processes. Desalination, 476, 114213.
- [21] Akgul, D., Çakmakcı, M., Kayaalp, N., & Koyuncu, I. (2008). Cost analysis of seawater desalination with reverse osmosis in Turkey. Desalination, 220(1-3), 123–131.
- [22] Elsayed, M., Refaey, H. A., Abdellatif, O. E., Sakr, R. Y., & Afify, R. I., (2018). Experimental investigation on the performance of a small reverse osmosis unit. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, 218.
- [23] Sarai Atab, M., Smallbone, A. J., & Roskilly, A. P., (2016). An operational and economic study of a reverse osmosis desalination system for potable water and land irrigation. Desalination, 397, 174-184.