Kalsiyumoksit (CaO) ve Magnezyumoksit (MgO) İçeriğine Sahip Termal Bariyer Kaplamaların (TBCs) Mikroyapısal ve Mekaniksel Özelliklerinin İncelenmesi

Termal bariyer kaplamalar (TBCs), havacılık endüstrisindeki gaz türbin motorlarının yanma odaları ve türbin kanatçıkları gibi yüksek sıcaklıklara maruz kalan kritik bölge parçalarında ısıl yalıtım sağlanması amacıyla kullanılan kaplama türüdür. TBC sistemlerin kullanımı ile metalik parçaların yüzey sıcaklığının azaltılarak türbin verimliliğinin artırılması ve daha uzun kullanım ömrü elde edilmesi sağlanmaktadır. Bu çalışmada, Inconel 718 süper alaşım altlık malzeme üzerine CoNiCrAlY içeriğine sahip metalik bağ kaplamalar yaklaşık 100 μm kalınlığa sahip olarak atmosferik plazma sprey (APS) kaplama yöntemi kullanılarak üretilmiştir. TBC sistemlerinin CaO ile stabilize edilmiş zirkonya (CSZ) ve MgO ile stabilize zirkonya (MSZ) üst seramik kaplamaları yaklaşık 300 μm kalınlığa sahip olarak APS yöntemi kullanılarak üretilmiştir. Üretilen farklı TBC sistemlerinin üretim sonrası mikroyapısal ve mekanik özellikleri karşılaştırmalı olarak incelenerek, değerlendirilmiştir. Kaplamaların mikroyapısal özellikleri ve faz yapıları taramalı elektron mikroskobu (SEM), elemental haritalama ve X-Işını Difraktometresi (XRD) analizleri kullanılarak belirlenmiştir. Ayrıca, mikroyapı ve faz yapıları haricinde porozite, sertlik ve yüzey pürüzlülük özellikleri ölçülerek sunulmuştur. Elde edilen analiz sonuçları, bulgular ve TBC sistemleri literatürdeki diğer ilgili çalışmalar ışığında karşılaştırmalı olarak değerlendirilmiştir.

Investigation of Micro-structural and Mechanical Properties of Thermal Barrier Coatings (TBCs) Containing Calcium Oxide (CaO) and Magnesium Oxide (MgO)

Thermal barrier coatings (TBCs) are a type of coating used to provide thermal insulation in critical zone parts exposed to high temperatures, such as combustion chambers and turbine blades of gas turbine engines in the aviation industry. With the use of TBC systems, it is ensured that the surface temperature of metallic parts is increased and the efficiency of the turbine is increased, and the longer service life is achieved. The metallic material used as a substrate for a typical TBC system has a combination of metallic bond coating with MCrAlY content and yttria-stabilized zirconia coating (YSZ). In this study, metallic bond coatings with CoNiCrAlY content on Inconel 718 superalloy substrate were produced using atmospheric plasma spray (APS) coating method with a thickness of approximately 100 μm. CaO stabilized zirconia (CSZ) and MgO stabilized zirconia (MSZ) top ceramic coatings of TBC systems were produced using the APS method with a thickness of approximately 300 μm. Post-production microstructural and mechanical properties of different TBC systems produced were comparatively investigated and evaluated. Microstructural properties, and phase structures of the coatings were determined using scanning electron microscopy (SEM), elemental mapping, and X-Ray Diffractometry (XRD) analysis. Also, apart from microstructure and phase structures, porosity, hardness, and surface roughness properties were measured. The obtained analysis results, findings, and TBC systems were evaluated comparatively in the light of other relevant studies in the literature.

___

  • [1] Doleker, K. M., Ozgurluk, Y., & Karaoglanli, A. C. (2018). Isothermal oxidation and thermal cyclic behaviors of YSZ and double-layered YSZ/La2Zr2O7 thermal barrier coatings (TBCs). Surf. Coatings Technol, 351, 78–88.
  • [2] Padture, N., Schlichting, K., Bhatia, T., Ozturk, A.,Cetegen, B., Jordan, E., Gell, M., Jiang, S., Xiao, T., Strutt, P., et al. (2001).Towards durable thermal barrier coatings with novel microstructures deposited by solution-precursor plasma spray. Acta Mater., 49, 2251–2257.
  • [3] Stiger, M. J., Yanar, N. M., Topping, M. G., Pettit, F. S., & Meier, G. H. (1999). Thermal barrier coatings for the 21st century. Zeitschrift Fur Met.
  • [4] Keyvani, A., Bahamirian, M., & Kobayashi, A. (2017). Effect of sintering rate on the porous microstructural, mechanical and thermomechanical properties of YSZ and CSZ TBC coatings undergoing thermal cycling. J. Alloys Compd., 727, 1057–1066.
  • [5] Cao, X. Q., Vassen, R., & Stoever, D. (2004). Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc., 24, 1–10.
  • [6] Ozgurluk, Y., Doleker, K. M., Ahlatci, H., Ozkan, D., & Karaoglanli, A. C. (2018). The microstructural investigation of vermiculite-infiltrated electron beam physical vapor deposition thermal barrier coatings. Open Chem., 16, 1106–1110.
  • [7] Doleker, K. M., Ozgurluk, Y., Ozkan, D., Mesekiran, N., & Karaoglanli, A. C. (2018). Comparison of microstructures and oxidation behaviors of Ytria and magnesia stabilized zirconia thermal barrier coatings (TBC). Mater. Tehnol., 52, 315–322.
  • [8] Qi, H.Y., & Yang, X.G. (2012). Computational analysis for understanding the failure mechanism of APS- TBC. Comput. Mater. Sci., 57, 38–42.
  • [9] Ma, W., Gong, S., Xu, H., & Cao, X. (2006). The thermal cycling behavior of Lanthanum-Cerium Oxide thermal barrier coating prepared by EB-PVD. Surf. Coatings Technol., 200, 5113–5118.
  • [10] Vaßen, R., Traeger, F., & Stöver, D. (2004). New Thermal Barrier Coatings Based on Pyrochlore/YSZ Double-Layer Systems. Int. J. Appl. Ceram. Technol., 1, 351–361.
  • [11] Choi, S. R., Bansal, N. P., & Zhu, D. (2005). Advances in Ceramic Coatings and Ceramic-Metal Systems Advances in Ceramic Coatings and Ceramic-Metal Systems. In; Zhu, Dongming; Plucknett, K., Ed., The American Ceramic Society, Ohio, 11–19.
  • [12] Ozgurluk, Y., Doleker, K. M., Ozkan, D., Ahlatci, H., & Karaoglanli, A. C. (2019). Cyclic hot corrosion failure behaviors of EB-PVD TBC systems in the presence of sulfate and vanadate molten salts. Coatings, 9, 166.
  • [13] Strangman, T., Raybould, D., Jameel, A., & Baker, W. (2007). Damage mechanisms, life prediction, and development of EB-PVD thermal barrier coatings for turbine air foils. Surf. Coatings Technol.
  • [14] Eliaz, N., Shemesh, G., & Latanision, R. M. (2002). Hot corrosion in gas turbine components. Eng. Fail. Anal., 9, 31–43.
  • [15] Özgürlük, Y. (2016). Soğuk Gaz Dinamik Sprey (CGDS) Kaplama Yöntemiyle Üretilen Termal Bariyer Kaplamaların (TBC) Sıcak Korozyon Davranışlarının İncelenmesi. Yüksek Lisans Tezi, Bartın Üniversitesi, Fen Bilimleri Enstitüsü, Bartın.
  • [16] Karaoğlanlı, A. C. (2012). Termal Bariyer Kaplamalarda Bağ Tabakasının Farklı Yöntemlerle Üretilmesi ve Özelliklere Etkisi. Doktora Tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Sakarya.
  • [17] Köroğlu, V. (2013). Refrakter Üretimine Yönelik Olarak Zirkonya Stabilizasyon Çalışmaları Doktora Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • [18] Wei, Z. Y., & Cai, H. N. (2019). Stress states and crack behavior in plasma sprayed TBCs based on a novel lamellar structure model with real interface morphology. Ceramics International, 45(14), 16948-16962.
  • [19] Cheng, B., Yang, N., Zhang, Q., Zhang, Y. M., Chen, L., Yang, G. J., & Li, C. J. (2017). Sintering induced the failure behavior of dense vertically crack and lamellar structured TBCs with equivalent thermal insulation performance. Ceramics International, 43(17), 15459-15465.
  • [20] Wei, Z. Y., Cai, H. N., Meng, G. H., Tahir, A., & Zhang, W. W. (2020). An innovative model coupling TGO growth and crack propagation for the failure assessment of lamellar structured thermal barrier coatings. Ceramics International, 46(2), 1532-1544.
Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi-Cover
  • Yayın Aralığı: 2
  • Başlangıç: 2014
  • Yayıncı: BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ