CMT ve Darbeli CMT Ark Kaynaklı AA7075-T6 AlAlaşımı Alın Bağlantıların Mekanik Davranışına Kaynak Hatalarının Etkisinin Araştırılması

Al-alaşımları hafiflik, iyi korozyon performansı, iyi şekillendirilebilirlik ve yüksek mukavemet gibioldukça iyi bir mekanik özellik kombinasyonuna sahiptir. Bunun sonucu, özellikle de hafiflik istenen taşımacılıksanayi başta olmak üzere birçok alanda yaygın olarak kullanılmaktadırlar. Ancak, bu alaşımların, özellikle deyaşlandırma sertleşmesi yapılmış AA7075-T6 gibi yüksek mukavemetli olan türlerinin, ergitme kaynağındaporozite oluşumu, çatlama ve kaynak bölgesinde aşırı mukavemet kaybı gibi problemlerle karşılaşılmaktadır.Dolayısıyla, bu alaşımların başarılı bir şekilde kaynaklanabilir olması endüstride daha da yaygın olarakkullanılmalarını sağlayacaktır. Bu bağlamda, katı hal kaynakları ve soğuk metal transferi (cold metal transfer –CMT) gaz metal ark kaynağı (GMAK) veya lazer kaynağı gibi düşük ısı girdili ergitme kaynakları ümitvadetmektedir.Bu çalışmanın amacı, soğuk metal transferi (CMT) ark kaynağı tekniği kullanılarak kaynak edilenAA7075-T6 levhaların kaynak dikişinde porozite oluşumu ve oluşan porozitenin kaynaklı levhanın mekaniközelliklerine etkisinin incelenmesidir. Bu çerçevede, 2 mm kalınlığındaki AA7075-T6 Al-alaşımı levhalar hemgeleneksel CMT hem de darbeli CMT ark kaynağı yöntemleri kullanılarak birleştirilmiştir. Kaynaklı levhalarıniçyapıları ve mekanik özellikleri detaylı optik mikroskop çalışmaları, mikrosertlik ölçümleri ve çekme deneyi ileincelenmiştir. Ayrıca, kaynak dikişinde oluşan iri porozitelerin kaynaklı levhanın mekanik davranışına etkisinibelirlemek için porozite oluşumu ile kaynak performansı arasında bir ilişki kurulmaya çalışılmıştır.

Investigation of the Influence of Weld Defects on the Mechanical Behavior of Cold Metal Transfer (CMT) and Cold Metal Transfer Pulsed (CMT-Pulsed) Arc Welded AA7075-T6 Al-Alloy Butt Joints

Al-alloys possess a very good combination of mechanical properties such as lightweight, good corrosion performance, good formability and high strength. Thus, they are widely employed in several industries, particularly in transport industry, where lightweight is required. However, fusion joining of these alloys, particularly age hardened grades such as AA7075-T6, involve several difficulties such as porosity formation, cracking and loss of strength in the weld area. Thus, successful joining of these alloys will further increase their use in industrial applications. In this respect, solid state joining or fusion welding techniques with low heat input such as cold metal transfer (CMT) gas metal arc welding (GMAW) technique or laser beam welding are promising joining methods. This study aims at investigating the formation of weld defects (i.e., pores) and determining the effect of pores on mechanical performance of the AA7075-T6 plate joints produced using CMT arc welding technique. For this purpose, AA7075-T6 Al-alloy plates with a thickness of 2 mm were joined using both conventional CMT and CMT pulse arc welding techniques. The microstructural and mechanical properties of the welded plates were investigated by detailed optical microscopy investigations, micro-hardness measurements and tensile tests. Moreover, a correlation between the joint performance and the formation of porosity in the fusion zone (FZ) was also attempted to show the effect of the presence of large pores on the mechanical behavior of the joint.

___

  • [1] Anderson, T. (2010). Welding Aluminium - Questions and Answers: A practical guide for troubleshooting aluminum welding-related problems 2nd edition, American Welding Society, FL, USA, 1-9.
  • [2] Çam, G. & İpekoğlu, G. (2017). Recent developments in joining of aluminum alloys. The International Journal of Advanced Manufacturing Technology, 91, 1851-1866.
  • [3] Kashaev, N., Ventzke, V. & Çam, G. (2018). Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications. Journal of Manufacturing Processes, 36, 571-600.
  • [4] Pakdil, M., Çam, G., Koçak, M. & S. Erim, (2011) Microstructural and mechanical characterization of laser beam welded AA6056 Al-alloy. Materials Science and Engineering: A, 528, 7350-7356.
  • [5] Çam, G. & Koçak, M. (2007). Microstructural and mechanical characterization of electron beam welded Al-alloy 7020”, Journal of Materials Science, 42, 7154-7161.
  • [6] Çam, G., Ventzke, V. & dos Santos, J. (1999). Characterization of laser and electron beam welded Alalloys. Praktische Metallographie, 36 (2), 59-89.
  • [7] Çam G., Ventzke, V., dos Santos, J., Koçak, M., Jennequin, G. & Gonthier-Maurin, P. (1999). Characterisation of electron beam welded aluminium alloys. Science and Technology of Welding and Joining, 4, 317-323.
  • [8] Çam, G. & Mıstıkoğlu, S. (2014). Recent developments in friction stir welding of Al-alloys. Journal of Materials Engineering and Performance, 23, 1936-1953.
  • [9] Çam, G., Güçlüer, S., Çakan, A. & Serindağ H.T. (2009). Mechanical properties of friction stir butt-welded Al-5086 H32 plate. Materialwissenschaft und Werkstofftechnik, 40, 638-642.
  • [10] Çam, G. (2005). Sürtünme Karıştırma Kaynağı. (SKK): Al-Alaşımları İçin Geliştirilmiş Yeni. Bir Kaynak Teknolojisi’, Mühendis ve Makine (Engineer and Machinery), 46, 30-39.
  • [11] Von Strombeck, A., Cam, G., dos Santos, J. F., Venzke, V. & Kocak, M. (2001). A Comparison Between Microstructure, Properties,and Toughness Behavior of Power Beam and Friction StirWelds in Al-Alloys, The TMS 2001 Annual Meeting Aluminum, Automotive and Joining, February 12-14, Warrendale, PA, 49- 264.
  • [12] dos Santos, J. F., Çam, G., Torster, F., Insfran, A., Riekehr, S., Ventzke, V. & Koçak, M. (2000). Properties of power beam welded steel, Al-and Ti alloys: Significance of strength mismatch”, Welding in the World, 44, 42-64.
  • [13] İpekoğlu, G., Kıral B. G., Erim, S. & Çam, G. (2012). Investigation of the effect of temper condition on friction stir weldability of AA7075 Al-alloy plates. Materiali in tehnologije, 46, 627-632.
  • [14] İpekoğlu, G., Erim, S., Kıral, B. G. & Çam, G. (2013). Investigation into the effect of temper condition on friction stir weldability of AA6061 Al-alloy plates”, Kovové materiály, 51, 155-163.
  • [15] G. İpekoğlu, Erim, S., & Çam, G. (2014). Investigation into the influence of post-weld heat treatment on the friction stir welded AA6061 Al-alloy plates with different temper conditions, Metallurgical and Materials Transactions A, 45, 864-877.
  • [16] İpekoğlu, G., Erim, S. & Çam, G. (2014). Effects of temper condition and post weld heat treatment on the microstructure and mechanical properties of friction stir butt welded AA7075 Al-alloy plates. The International Journal of Advanced Manufacturing Technology, 70, 201-213.
  • [17] İpekoğlu, G. & Çam, G. (2014). Effects of initial temper condition and postweld heat treatment on the properties of dissimilar friction-stir-welded joints between AA7075 and AA6061 aluminum alloys. Metallurgical and Materials Transactions A, 45, 3074-3087.
  • [18] Çam, G., İpekoğlu, G. & Serindağ, H. T. (2014). Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061-T6 joints. Science and Technology of Welding and Joining, 19, 715-720.
  • [19] Bozkurt, Y., Salman, S. & Çam, G. (2013). The effect of welding parameters on lap-shear tensile properties of dissimilar friction stir spot welded AA5754-H22/2024-T3 joints. Science and Technology of Welding and Joining, 18, 337-345.
  • [20] Çam, G. (2001). Al-Alaşımları İçin Geliştirilen Yeni Kaynak Yöntemleri. TMMOB Makina Mühendisleri Odası, Kaynak Teknolojisi III. Ulusal Kongresi, 19-20 Ekim, İstanbul, 267-277.
  • [21] Günen A., Kanca, E., Demir, M., Cavdar, F., Mistikoglu, S. & Cam, G. (2018). Microstructural and mechanical properties of friction stir welded pure lead. Indian Journal Of Engineering and Materials Sciences, 25, 26-32.
  • [22] Küçükömeroğlu, T., Şentürk, E., Kara, L, İpekoğlu, G. & Çam, G. (2016). Microstructural and mechanical properties of friction stir welded nickel-aluminum bronze (NAB) alloy. Journal of Materials Engineering and Performance, 25, 320-326.
  • [23] Çam, G. (2011). Friction stir welded structural materials: Beyond Al-alloys. International Materials Reviews, 56(1), 1-48.
  • [24] Çam, G., İpekoğlu, G., Küçükömeroğlu, T. & Aktarer S.M. (2017). Applicability of friction stir welding to steels. Journal of Achievements in Materials and Manufacturing Engineering, 80, 65-85.
  • [25] Çam G., Ventzke, V., dos Santos, J., Koçak, M., Jennequin, G. & Gonthier-Maurin, P. (1999). Characterisation of electron beam welded aluminium alloys. Science and Technology of Welding and Joining, 4, 317-323.
  • [26] Küçükömeroğlu, T., Aktarer, S.M., İpekoğlu, G. & Çam, G. (2018). Mechanical properties of friction stir welded St 37 and St 44 steel joints. Materials Testing, 60, 1163-1170.
  • [27] Küçükömeroğlu, T., Aktarer, S.M., İpekoğlu, G. & G. Çam, “Microstructure and mechanical properties of friction stir welded St52 steel joints”, International Journal of Minerals, Metallurgy and Materials, 25, 1457-1464.
  • [28] Selvi, S., Vishvaksenan, A. & Rajasekar, E. (2018). Cold metal transfer (CMT) technology - An overview. Defence Technology, 14, 28-44.
  • [29] Pickin, C.G. & Young, K. (2006). Evaluation of cold metal transfer (CMT) process for welding aluminium alloy. Science and Technology of Welding and Joining, 11, 583-585.
  • [30] Cornacchia, G., Cecchel, S. & Panvini, A. (2018). A comparative study of mechanical properties of metal inert gas (MIG)-cold metal transfer (CMT) and fiber laser-MIG hybrid welds for 6005A T6 extruded sheet. The International Journal of Advanced Manufacturing Technology, 94, 2017-2030.
  • [31] Gungor, B., Kaluc, E., Taban, E. & Şık, A. (2014). Mechanical and microstructural properties of robotic cold metal Trasfer (CMT) welded 5083-H111 and 6082-T&51 aluminum alloys, Materials & Design, 54, 207-211.
  • [32] Cong, B., Ding, J. & Williams, S. (2015). Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy. The International Journal of Advanced Manufacturing Technology, 76, 1593-1606.
  • [33] Elrefaey, A. (2015). Effectiveness of cold metal transfer process for welding 7075 aluminium alloys. Science and Technology of Welding and Joining, 20, 280-285.
  • [34] Koçak, M., Pakdil, M. & Çam, G. (2002). Fracture behaviour of diffusion bonded Ti-alloys with strength mismatch. Science and Technology of Welding and Joining, 7, 187-196.
  • [35] Çam, G., Koçak, M., Dobi, D., Heikinheimo, L. & Siren, M. (1997). Fracture behaviour of diffusion bonded bimaterial Ti-Al joints. Science and Technology of Welding and Joining, 2(3), 95-101.
  • [36] İpekoğlu G., Akçam, Ö. & Çam, G. (2018). Effect of plate thickness on weld speed in friction stir welding of AA6061-T6 Al-alloy plates. The Paton Welding Journal, 12, 77-82.
  • [37] He, E., Liu, J., Lee, J., Wang, K., Politis, D.J., Li, C. & Wang, L. (2018). Effect of porosities on tensile properties of laser-welded Al-Li alloy: an experimental and modelling study”, The International Journal of Advanced Manufacturing Technology, 95, 659-671.