Suborbital Graphs For The Invariance Group

Suborbital Graphs For The Invariance Group

In this paper, we investigate  some  suborbital  graphs  for  the  invariance group. We gave a necessary and sufficient condition for the graph F_(u,N) to be circuit. And also we went further to show some relations between the lengths of circuits in  and the generate elliptic elements of the group Gamma [N].

___

  • Akbaş M. “On Suborbital Graphs For The Modular Group”, Bulletin London Mathematical Society 33: 647–652, (2001).
  • Beşenk M. “Connectedness of Suborbital Graphs For a Special Subgroup of The Modular Group”, Mathematical Sciences and Applications E-Notes 4(1): 45–54,(2016).
  • Beşenk M., Güler B.Ö., Değer A.H., Kesicioğlu Y. “Circuit Lengths of Graphs For The Picard Group”, Journal of Inequalities and Applications 1: 106–114,(2013).
  • Bigg N.L., White A.T. Permutation Groups and Combinatorial Structures. Cambridge University Press, Cambridge, (1979).
  • Güler B.Ö., Beşenk M., Değer A.H., Kader S. “Elliptic Elements and Circuits in Suborbital Graphs”, Hacettepe Journal of Mathematics and Statistics 40: 203–210, (2011).
  • Hardy G. H., Wright E. M. An Introduction to The Theory of Numbers. Oxford University Press, Oxford, (1979).
  • Jones G. A., Singerman D., Wicks K. “The Modular Group and Generalized Farey Graphs”, London Mathematical Society Lecture Note Series 160: 316–338, (1991).
  • Kesicioğlu Y., Akbaş M., Beşenk M. “Connectedness of a Suborbital Graph For Congruence Subgroups”, Journal of Inequalities and Applications 1: 117–124, (2013).
  • Schoeneberg B. Elliptic Modular Functions. Springer, Berlin, (1974).
  • Sims C.C. “Graphs and Finite Fermutation Groups”, Mathematische Zeitschrift 95: 76–86, (1967).
  • Tsuzuku T. Finite Groups and Finite Geometries. Cambridge University Press, Cambridge, (1982).